
Common Application Framework for
Engineering Analysis (CAFEAN)

Preprocessor Plug-in API

Revision 1

Ken Jones
John Rothe

William Dunsford

August 2005

Copyright © 2005, Applied Programming Technology, Inc.,Bloomsburg, PA 17815

���������	�
��
��

1. Introduction...1
2. Preprocessor Plug-in Implementation...3

2.1 Plug-in Interface Classes...4
2.2 Plugin Interface Operations...6

2.2.1 Processing Batch Commands..6
2.2.2 Adding Menu Items...6
2.2.3 Submitting Jobs...6
2.2.4 Plugin Preferences...6
2.2.5 Essential Core Classes for a Code Plugin...7

2.3 The Multi-View Architecture..10
2.4 Creating a Model...12

2.4.1 Component Categories..12
2.4.2 Foreign Key Relationships..12
2.4.3 Methods to Implement...13
2.4.4 Model Options...15
2.4.5 Root Components..16
2.4.6 Component Number Groups..16

2.5 Creating Bean Based Components..17
2.5.1 Methods to Implement...17
2.5.2 The ComponentListener Interface...20

2.6 Creating Connections..22
2.6.1 Methods to Implement...22
2.6.2 Connection Drawing..23

2.7 ModelEditor Documents..24
2.7.1 The PIB Format...24
2.7.2 Loading a Model..25
2.7.3 Saving a Model..25
2.7.4 PibFile Load/Save Example..26
2.7.5 Model Load/Save Example...28

2.8 Undo and Redo..30
2.9 Creating Connectible Components..31

2.9.1 Methods to Implement...32
2.10 Plugin-Specific Unit Types...34

2.10.1 Supporting Units in the Model..34
2.10.2 Units Classes...35

2.11 Model Validation...37
2.11.1 ValidationTest Implementation...37
2.11.2 ValidationTest Methods in the Model...38

2.12 Using the Property View...39
2.12.1 The PropertyController Interface..39
2.12.2 Attribute Groups..40

2.13 Using Registered Dialogs..41
2.14 Customizing the 2D View...42

2.14.1 Adding Toolbars..42
2.14.2 Insertion Handlers and the Insertable Interface...42
2.14.3 Creating Custom Mouse Handlers..43

Plug-in API Page ii

���������	�
��
��

2.15 Useful Utility Classes..44
2.15.1 Interfaces...44
2.15.2 Bean Editors..45
2.15.3 GUI Utilities..46

3. Packaging a Plug-in..47
4. Preprocessor Python Scripting..48

4.1 Built-in Python Methods...49
4.2 Core CAFEAN Classes..50

4.2.1 Real Class..50
4.2.2 AbstractComponent Abstract Class...50

4.3 TRACE Plug-in Examples...52
4.3.1 Hydraulic Components..52
4.3.2 Included files...55

Plug-in API Page iii

���
���������

Applied Programming Technology, Inc. (APT) has developed the Symbolic Nuclear
Analysis Package (SNAP) software under funding from the United States Nuclear
Regulatory Commission (USNRC). SNAP is built on a highly flexible framework for
creating and editing input for engineering analysis codes as well as extensive
functionality for submitting, monitoring, and interacting with the analysis codes. This
framework known as the Common Application Framework for Engineering Analysis
(CAFEAN) provides a standardized application programming interface (API) used to
create modular plug-in's for engineering analysis codes. The modular plug-in design of
the software allows functionality to be tailored to the specific requirements of each
analysis code.

This framework is essential to SNAP's Multi-View capability. The multi-view design
permits several views of a component's data to be displayed simultaneously. These views
can include 2D & 3D representations, editors, or displays of the analysis code ASCII
input. Each of these views update automatically as the component data is modified. 2D
views may also be embedded within other 2D views to provide a "Drill-Down" capability.
CAFEAN also provides a framework to manage the complex interconnections that may
exist between a model's components. This is accomplished by using a primary-foreign
key relational mapping to manage component interconnections. By avoiding direct
references between components, this approach provides the robust architectural base
needed to support several of CAFEAN's more advanced features such as multi-step
undo/redo, component duplication and cut&paste operations between models.

This document is intended to provide instructions for programmers who wish to
extend the capabilities of SNAP by creating new plug-ins to support additional analysis
codes and/or add new features to the user interface. Documentation of CAFEAN's
python scripting capability which is useful for automating operations performed on
models is also provided. Section 2 provides a detailed description of the implementation
requirements for a Plug-in. Section 3 documents the packaging of a plug-in. Section 4
documents the scripting support available to the preprocessor client via a Python
interpreter.

���������������
�����
�������

This API programmers guide is designed for someone with a working knowledge of
Java™, Javabeans™, and the CAFEAN Preprocessor. The intention is for developers to
be able to implement new analysis codes or feature operations for the Preprocessor
without requiring modification of the primary source tree.

�����������������

The CAFEAN Preprocessor plug-in architecture provides a core functionality for the
visual editing and manipulation of analysis code input files. All analysis code specific
functionality is implemented using plug-ins. This approach allows support for new
analysis codes to be developed independently of each other, allowing developers to

Plug-in API Page 1

immediately implement necessary functionality without waiting for the primary source to
be updated.

����� �
�����������

The first task when developing a CAFEAN plug-in is to determine which type of
plug-in to develop. The CAFEAN preprocessor plug-in architecture supports two basic
types of plug-ins: code plug-ins and feature plug-ins. In general, if the new functionality
includes new components, or provides support for a new analysis code, then it should be
a code plug-in. If the plug-in manipulates existing components or models it is a feature
plug-in.

Plug-in API Page 2

!�����"���������������
���"����
�����

This section provides an overview of the implementation requirements for a
Preprocessor plug-in. The com.cafean.CodePlugins package contains the interfaces and
abstract classes needed to develop plug-ins for the CAFEAN pre-processor, runtime and
post-processor. Only those portions related to Preprocessor plug-ins are discussed here.

Plug-in API Page 3

Figure 1. Plug-in Architecture UML

!�
�������
��
��������	������

Preprocessor plug-ins are created by extending the abstract classes: MEPluginData,
MEPlugin, MECodePlugin and MEFeaturePlugin contained in the nrcsnap.CodePlugins
package.

�#�����
�����$��������	����

MEPluginData is the first class loaded by the plug-in manager is used to load the
MEPlugin itself. MEPluginData contains methods for retrieving static information about
all of the important values that define a plug-in. These values are: plugin-id, plug-in class,
version, plug-in prerequisites, and class prerequisites.

� The plugin-id is the short name used to reference this plug-in.

� Plugin class is a String containing the absolute path of the plug-in class name
including package names.

� Version is a String representing the current version of the plug-in.

� Plugin prerequisites is an array of strings that indicates which plug-ins need to
be loaded for this plug-in to successfully load. Each of these strings contains
the plugin-id and version of the plug-in it depends on, separated by a colon.

� The class prerequisites is the list of Java™ class packages that need to be
installed on the users system for the plug-in to work properly.

�#�����
�$��������	����

MEPlugin has several abstract methods that must be defined in any extending class.
Some of this functionality has been implemented by MEFeaturePlugin and
MECodePlugin, others must be defined by the plug-in.

There is some correlation between methods in MEPlugin and MEPluginData. Several
methods are simply wrapper functions for methods in MEPluginData. This allows access
to the requirements and information about a given plug-in after the plug-in has been
loaded.

� getPluginId() should return the the plug-in data's plugin-id.

� getVersion() should return the version.

� getPluginPrereqs() should return the plug-in prerequisites in the form [Plug-in
ID]:<Version>. The version (and accompanying colon) are both optional.

� getPluginInfo() should return a description of the plug-in. Plug-in info is used
inside the AboutPluginsDialog for describing plug-ins to the user. It should be
either unformatted text, or conservatively formatted HTML suitable for
inserting into an existing HTML document.

Plug-in API Page 4

�#	��������
�$��������	����

MECodePlugins are the implementation of support for an analysis code in the
ModelEditor. This implies a new AbstractModel extension, with its own set of
components.

When the user wishes to create a new model in the ModelEditor, they are prompted to
choose the type of model (by plugin-id) they want to create. createNewModel is called
on the chosen plug-in and the model is added to the list of currently open models in the
Mainframe and Navigator.

It is recommended that plug-ins store their models in ModelEditor Document (MED)
files in a platform independent binary file format. For more information on loading and
saving models refer to the ModelEditor Documents section.

�#������������
�$��������	����

There are five methods that are needed by every MEFeaturePlugin: load, save,
modelRemoved, modelAdded, and isAssociated. MEFeaturePlugins may store data inside
the MED file produced by another model in the ModelEditor. This is done in such a way
that the model can still be retrieved from the MED file even on a machine that doesn't
have the MEFeaturePlugin.

Feature Plug-ins may have data related to a particular open model. When this
relationship exists, isAssociated should return true for that model. When a model
associated with a MEFeaturePlugin is saved to a local file, that plug-in is notified by the
Mainframe through the save function. That save function is passed the model that is being
stored, and the PibFile that is being written out. This allows the plug-in to write whatever
blocks it needs into the MED file.

Similarly, when an MECodePlugin is reading in an MED file, at the end of it's parse
cycle, it may encounter information from a MEFeaturePlugin. When it does, the
MEFeaturePlugin is informed through the load function. The load function is given the
AbstractModel that has just been read in, and the PibFile. This allows the plug-in to load
its model specific data back into the ModelEditor.

Since MEFeaturePlugins may use data that is specific to individual AbstractModels,
these plug-ins are notified whenever an AbstractModel is added or removed from the
ModelEditor. This allows the plug-in to dispose of any local data, or to create new local
data as appropriate.

Plug-in API Page 5

!�!������
��
��������%"������
�

Most of the user accessible functionality for a plug-in is implemented through toolbars
on the MainFrame and DrawnViews and the batch command processor.

!�!�
���������
��&�����	����
��

Commands are parsed by white space and converted to a vector of words prior to
being sent to the batch command processor. Batch commands that contain a plug-in ID
as the first word are forwarded to the respective plug-in's processCommand method. In
this case, the plug-in ID element is removed from the vector prior to being sent to the
plug-in.

!�!�!�$���
����
�������

Menu items can be inserted by a plug-in into the Mainframe (in loadMainMenuItems)
or the DrawnView (in loadViewMenuItems). For the DrawnView, addMenuItem is used
to add items to the Tools menu.

MainFrame's addMenuItem allows JMenuItems to be inserted into any of the main
menus, which are selected by name. The name of the menu is the word that appears in the
main toolbar for that menu: File, Edit, View, Window, Tools, and Help are the valid
names. Menu items are inserted in the order the plug-ins are read in from the directory.

MainFrame's addImportMenuItem and MEPlugin's addCurrentExportItems allows the
plug-ins to specify their import and export functionality. If there is more than one way to
import a model, it is preferred for a JMenu to be added (with the plugin-id as the text),
that contains all of the import operations for that plug-in. All menu items may make use
of Mainframe's getCurrentModel to obtain the model that currently has editing focus.
This allows the plug-in to determine whether the plug-in item should affect the current
model, and respond accordingly.

DrawnView's addMenuItem appends a menu item to the Tools menu that appears on
every DrawnView. The DrawnView has a method for obtaining the model it represents,
so it is easy to ensure that only certain types of models get plug-in menu items.

!�!�'�(�������
��)���

When an AbstractModel is ready to be submitted to the Calculation Server, it is the
MECodePlugin's responsibility to get it there. A detailed example of submitModel is
provided in the class documentation of MECodePlugin. Additional information can be
found in the documentation for LocalSubmitDialog.

!�!�*������
��������
���

�����������	
�����	�
��
��������������

Each plug-in may store settings information into the program settings file. Before the
plug-in gets an opportunity to load or store its settings, the Configurator switches to a
module with the plugin-id as it's name. This prevents any possible overwriting of data in

Plug-in API Page 6

the user settings for different plug-ins. The plug-in can then start directly loading and
storing values in the Configurator. The settings file is written in XML format, so all
values ultimately get stored and read as strings, but there are some convenience methods
for storing specific types of data such as fonts and colors.

���������	
�
��������������

Plugin preferences can be made editable by building a JavaBean™ that contains
properties for each of the editable preferences. This bean is then returned by the plug-in's
getPluginPreferences method and edited in the Preferences Dialog in the same manner as
other JavaBean™ type objects and components.

!�!�+�#���
�����	����	�������������	���������

$��������������$��������	����

The AbstractModel is the heart of a MECodePlugin. The model contains all of the
components, connections, and objects that are needed to model a simulation. All of the
AbstractComponents inside a model are organized by Category inside of
ComponentLists. Access to a component can be by its primary key (called the ident),
component (cc) number, or by a secondary temporary key called the db_id.

The AbstractModel controls all of the model level operations. It starts save and load
routines for the whole model, as well as initiates imports and exports.

$�������	��"�
�
��$��������	����

Any object for an analysis code that can be displayed in a view or the Navigator should
be an AbstractComponent. This number is usually unique within the components
immediate category. Many analysis codes organize their components solely by component
number. ComponentListeners are objects, or components that are notified whenever a
change occurs with a given component or its connections.

,�
����%�-����$��������	����

Anything inside a model that is not a component, but needs a global primary key, is a
GenericObject. A single ElementList and its accessors is provided by AbstractModel and
can be used by subclasses to store any GenericObjects that may be needed for the model.

For example, cells contained within thermal-hydraulic components commonly extend
the GenericObject class. This allows cells to be accessed using primary-foreign key
relationships, eliminating the pitfalls associated with direct references and simplifying
processes such as renodalization.

	�

�����
��$��������	����

Connections are special AbstractComponents that connect two other
AbstractComponents together. The generic form has only two primary key references,

Plug-in API Page 7

and two Categories. Since Connection itself is an abstract class, appropriate extensions to
the Connection must be implemented.

Connections are stored in a ComponentList in the AbstractModel. When a connection
is completed, the Connection object created is added to both Components with their
respective addConection methods. Each AbstractComponent has a ConnectionList, which
essentially is a list of foreign key references to the Connections stored in the
AbstractModel. All Connections involving a component can be retrieved with its
getConnections method and are normally stored in an instance of ConnectionList within
that component.

	�

�����
������$��������	����

A ConnectionData object is transient data that is generated either by the
DrawnComponent when it is building its ConnectingPt objects, or by a Connection when
it is determining the nature of the connections on either side. Two ConnectionData
objects can be used to initiate a connection between two components as well, using the
AbstractComponent's connectTo method.

ConnectionData represents the actual location information on a component for a given
connection. For example, for a HydroConnection between two pipes, the
HydroConnectionData includes the cell index, the face number on the target component,
the edge index, and face number on the source component.

	��������	����

Categories provide the primary source of component organization within a model.
They form a hierarchical representation in that a Category may be a subset or superset of
other Categories. For example, the Category for all hydraulic components would be the
superset for the Category for pipes as well as the Category for pumps. Each category
contains the icon for display in the navigator, the URL of the image for the Toolbox, the
name of the category, and whether the category represents visual components. Parent
categories and non-visual components do not need a URL for their toolbox image, and
non-visual components do not need an icon for the navigator.

AbstractModel contains predefined categories for views and connections. They are
publicly defined in AbstractModel as CAT_VIEW and CAT_CONNECTION,
respectively. These Categories and their lists are handled by AbstractModel and need not
be handled by derivative models.

NOTE: Categories must be compared by isSubset, isSuperset or equals, not with
reference equivalence.

	��"�
�
�.����	����

The ComponentList is a list of AbstractComponents sorted by their primary key.
ComponentList does not allow duplicate keys but will allow a single object to be added

Plug-in API Page 8

multiple times. All searches on this component list by that key are done using a binary
search algorithm.

���/
0��/�	����

The DrawnView is the dialog that contains the actual View. Within this dialog the
ZoomablePanel maintains a zoomed view of its contained BeanBox. The BeanBox in
turn, contains and displays the DrawnComponents.

Menu items can be added to a DrawnView's Tools menu from a plug-in's
loadViewMenuItems method by using DrawnView's addMenuItem method.

���/
	��"�
�
���$��������	����

Most AbstractComponents can be rendered in a DrawnView. Each
AbstractComponent has its own implementation of createDrawnComponent(). This
returns a DrawnComponent capable of rendering the AbstractComponent that created it.
The DrawnComponent is the rendering engine for the component in the two dimensional
DrawnView. The DrawnComponent also contains ConnectingPts, which are locations on
the drawn icon where a connection can be started or completed. The local information of
what that ConnectingPt actually represents in the component (such as cell number or face
value) is stored in that ConnectingPt's ConnectionData object.

If a ConnectingPt represents multiple internal locations that the user must choose
between when a connection is completed, a SpecialConnectionData object should be used
instead. When a connection is completed by the user, each component gets the
opportunity to modify the ConnectionData object obtained from the ConnectingPt on it's
DrawnComponent with the createTargetData and createSourceData methods.

When a connection is rendered using a DrawnConnection, it is drawn between two
ConnectingPts. This is done by comparing all of the ConnectingPt's ConnectionData
objects until a match is found using ConnectionData's equals method.

	�

����
�����	����

A ConectingPt is a point on a DrawnComponent that can be the source or target of a
Connection. They are created with DrawnComponent's createConnectionPt and used by
the connection tool to find potential connection beginnings and endings as well as by
DrawnConnections to find the location of their end points.

Each ConnectingPt has a ConnectionData object that describes the correlation between
its location on the DrawnComponent and the Component it represents. It also has a Pad
object that defines the ConnectingPt's position and the orientation of any lines exiting the
DrawnComponent at this point.

Plug-in API Page 9

!�'�����������0��/�$�����������

Figure 2 illustrates the ModelEditor's Multi-View architecture and and component
management features. In the ModelEditor all components are AbstractComponents, and
all AbstractComponents are stored in ComponentLists in the model. These components
are then referred to by a unique id called an ident.

Models also have a hierarchy of categories which each AbstractComponent falls into.
For each component type there is a Category, and these component categories are grouped
into other categories.

For instance: A TRACE pipe is in the Pipes category, which is in the 1D Components
category, which is part of the Hydraulic Components category. When other 1D and
hydraulic components are taken into account a very organized hierarchy of categories

Plug-in API Page 10

Figure 2. Multi-View Architecture UML

results. These Category objects are used for searching for, iterating through or retrieving
all of particular groupings of components. They also determine the structure shown in the
Navigator.

Plug-in API Page 11

!�*�	�����
���������

The model is the central data structure for any Code plug-in. It handles the creation,
loading and saving its contained components. As a result, a plugin's AbstractModel
extension requires a significant amount of customization to be fully functional. The
following is a discussion of the structures, concepts and methods required for a complete
model.

!�*�
�	��"�
�
��	���������

Components in the CAFEAN preprocessor are organized into a hierarchical set of
groups called categories. Each category is represented by an instance of the Category
class. Each Category can have a parent and a set of child Categories. With this system,
each component type should have it's own Category instance. Take note, however, that a
Category that represents an actual component cannot have child Categories.

The Categories made available by a model are used in various places in the UI to
organize and select components. For example: The Navigator's tree structure is
determined almost entirely by the Category instances returned by the model's
getCategories() method. Also, a component's Category is used to create instances of that
component from the Navigator via the model's createComponent(...) method.

Note that if user defined numerics or views are to be included in the Navigator's listing
of components for a model, these categories (CAT_NUMERICS & CAT_VIEW) must be
included in the array returned by getCategories().

Refer to the Source Code Documentation of the Category class for more information
and detailed examples of the creation and use of Categories.

!�*�!�������
� ���1������
���"�

Each component in the CAFEAN preprocessor contains a unique primary key called
an ident. Foreign key references to these idents are used for all component-to-component
references in the ModelEditor. For simple one-way references, a single foreign key
reference is used. For two-way references or references that must be rendered as lines in a
DrawnView, a Connection object is used that contains foreign key references to both
components.

In all cases the ident reference value 0 indicates an invalid reference (i.e. NULL) thus
no search is required to determine the component referred to. All non-zero ident reference
values are considered valid and require a search to determine the component referred to.
Note that a non-zero ident reference does not necessarily mean that the referred to
component exists or is available.

Refer to the Source Code Documentation of the AbstractModel class for more
information of the handling of foreign key references.

Plug-in API Page 12

!�*�'��������������"����
�

AbstractModel contains a set of abstract methods that must be overridden. It also
contains a larger set of methods that may also need to be overridden for particular Code
Plug-ins. The following is a list of the methods that must be overridden and their purpose
as well as a list of optional methods that are commonly used in Code Plug-ins.

The following methods must be implemented by every model. Some are required
before the resulting class will compile; others are implemented to handle the components
stored in AbstractModel and must be extended to handle the new model's components.

,�������
���������

This method is a simple accessor for the the model's Plugin-ID. It should return the
same value as the MEPluginData included with that plug-in.

��2�������������

A version of this method is provided both with and without a showProgress parameter.
This parameter indicated whether or not a progress dialog should be shown during the
save process.

����1�����������������

This method is used to retrieve data from the CAFEAN Calculation Server in order to
initialize the current model with a set of restart data. This data normally consists of initial
conditions for submitting a restart.

�����������������

This method should perform a set of checks on the model and its' component's current
state. This method normally utilizes AbstractComponent's isOkayForExport methods and
may optionally add error and/or warning messages to the MessageWindow.

For more information on checkModel, refer to the Model Validation Section.

���	����������������

This method retrieves the complete set of Categories available for this model and
should be overridden to include any new Categories defined by the model. The ordering
of these Categories is used by the Navigator to determine it's tree-node ordering.

Note: This set should include the categories defined by AbstractModel that will be
used in this plug-in. (e.g. CAT_NUMERICS, CAT_VIEW)

Plug-in API Page 13

���	��"�
�
���������

This method must be overridden to handle any new Categories. This method should be
able to handle a parent Category by calling getComponents with each of it's children.
Note that Categories defined in AbstractModel should be passed to AbstractModel's
implementation of getComponents.

��
�	��"�
�
�&����
��3���
�	��"�
�
�&��&4����������

These methods retrieve a component by the ident or DB_ID (and optionally Category)
given. Only the version with a Category parameter should be overridden. These methods,
like getComponents, must be overridden to handle any new Categories in this model.

For more detailed information on either of these methods, see the Source Code
Documentation.

���	��"�
�
��������

This method adds a component to the appropriate internal ComponentList and ensures
that it has an appropriate ident. The default implementation of addComponent handles
those Categories defined in AbstractModel.

This method must be overridden to store new component types into an appropriate
ComponentList (defined in the model) and to handle updating the ident of the added
component with a call to objectAdded.

Note: Plug-ins with a small number of component instances (hundreds) may choose
to use a single ComponentList instance to hold all components.

������	��"�
�
��������

This simple method takes a Category and creates an appropriate component instance
using that component's default constructor. This must be overridden to handle new
Categories and should call the default implementation for those Categories defined in
AbstractModel. The model may be set on the component but the component should not
be added to the model.

����2�	��"�
�
��������

This method removes a component from the ComponentList it is stored in and calls
fireComponentDeleted on that component. This must be overridden to handle new
Categories and should call the default implementation for those Categories defined in
AbstractModel.

���	��"�
�
����������������

This creates an Iterator for use in traversing a subset of the components in the model.
The default implementation uses the ComponentList method iterator() for the appropriate

Plug-in API Page 14

ComponentList. The Iterator created will traverse the components that are part of the
Category given in ident order. This must be overridden to handle new Categories and
should call the default implementation for those Categories defined in AbstractModel.

Note: The current Iterator creation strategy cannot span multiple ComponentList
instances.

���	��"�
�
�	��
��������

This method returns the number of components in the model who's Category is a
subset of the given Category. This, much like removeComponent, must be overridden to
handle new Categories.

����

������
�1�����
����������

This method calls reconnectIdentReferences on every foreign key holder in the model.
The default implementation handles only the ComponentList instances defined in
AbstractModel. This must be overridden to handle any new ComponentList instances as
well as the model's options object if it contains foreign keys.

For more information on reconnectIdentReferences, see the Source Code
Documentation for AbstractModel.

�����������������

This method clears the DB_IDs of all components in the model. It must be overridden,
like reconnectIdentReferences, to handle any new ComponentLists.

��������%"���
��������

This retrieves a plugin-specific model options object that is assumed to be a
JavaBean™. If this method returns null then the options node will not appear. The
default implementation returns null and does not necessarily need to be overridden. See
Model Options below.

������	��"�
�
���������

This method is used to organize and layout DrawnComponent instances in a View.
This is a plugin-specific method intended only to determine appropriate x,y locations in
the View for each DrawingComponent given.

!�*�*�������%"���
�

A model's options object is intended as a place to store properties that are specific to a
particular model but not complex or large enough to justify their own component.
Properties such as a model's name, description comments should be stored here. This
object is assumed to be a JavaBean™ and should extend AbstractBeanComponent to
ensure that ComponentChanged events are generated when it is edited.

Plug-in API Page 15

The Model Options node will appear as the first sub-node of the model in the
Navigator. This node's string and icon representation will be taken directly from the
BeanInfo of the options object. This is essentially the same functionality offered by using
Root Component with much smaller implementation requirements.

!�*�+�1����	��"�
�
��

The root components feature is intended to handle cases where there is only a single
instance of a particular component in a model. Root components are displayed in the
Navigator just below Model Options (if present) using the same node type as other
components. The component's toString method is used as the name of the node and it's
Category decides its icon. Root components will appear in the Navigator in the same
order as they are returned from getRootComponents.

Plugins requiring root components must override AbstractModel's
getRootComponents method and handle reconnecting any foreign key references
contained in those components.

!�*�5�	��"�
�
��6������,���"�

Component number groups are used to allocate component numbers to new
components, to determine if any existing numbers are invalid or duplicated and to
renumber sets of components within a specified range.

To use component number groups in a code plugin, the getComponentGroups method
must be overridden to return appropriate groups for the available component types.

For each group the following must be defined:

� the initial component number

This is the first number available in the group. The first component created in
this group will receive this number.

Note: This number is not necessarily smaller or lower than the maximum.

� the maximum component number

This is the last component number available in the group. This is not
necessarily higher than the initial number.

� the increment quantity

This is the amount added to the last used number to determine the next
allocated number. To creates a group that begins at -1 and goes to -1000 set the
initial to -1, maximum -1000 and increment to -1. (or any negative integer)

� the Categories included in the group

This is the set component Categories that will be included in any checks and
renumbering performed with this group. These Categories will also be used to
determine which group a particular component is part of when allocating a new
component number. Note that a group may have one or more Categories.

Plug-in API Page 16

!�+�	�����
��&��
�&�����	��"�
�
��

Components are the basic data structures for all existing code plug-ins. With this in
mind, care must be taken when determining what analysis code structures map to
components. In general, if there can be more than one of a particular object and/or that
object is referred to by other components then that object should be a component. Often if
there is only one of a given component it maps well to a root component. Root
components and non-root components are both components and thus the following
section applies equally to both.

To be a component in the CAFEAN pre-processor, an object must extend
AbstractComponent or AbstractBeanComponent. Components in a JavaBean™ based
model should extend AbstractBeanComponent to enable access to the more modern bean
based editors and undo available in CAFEAN. In addition, appropriate BeanInfo classes
must be provided for each component to allow proper display of properties for that
component in the Property View.

All new plug-in development should follow the JavaBean™ architecture and use the
bean based CAFEAN functionality. The creation of non-JavaBean™ plug-ins is not
recommended.

!�+�
��������������"����
�

����������������������	

This simple method should return the name of this component's type. For example:
"Pipe" or "Pump". The default toString method for AbstractComponent uses this method,
the component number and the component name to create a simple string representation.

The default implementation of this method uses the class name as the label.

���	������������������������	

This returns a reference to the Category this component is part of. The Category will
be used for foreign key searches and adding this component to a model. This is the only
abstract method in AbstractComponent and is essential. See the discussion of Categories
in the model creation section as well as the Source Code Documentation for Category for
more information on the use and creation of Categories.

���
������������������	

GenericObject (the ultimate parent of AbstractComponent) is a Cloneable class,
therefore all components and their sub-components must have proper clone methods
defined. Refer to the Java documentation for more information on how to properly
implement clone.

Plug-in API Page 17

�����(�����3��������(����������������������	

The CAFEAN pre-processor undo system assumes that all objects being edited are
JavaBeans™ and that all beans are StateEditable. Because of this, proper storeState and
restoreState methods must be implemented for all components and sub-components.
Improperly implemented storeState and restoreState methods can cause errors that are
difficult to diagnose. Refer to the Java documentation for more information on how to
properly implement storeState and restoreState.

���"�������������
���
���	

This method is used to properly initialize components after they've been created either
via the Navigator or the Insert Tool. A call to this method implies that the user has
created a new component and that the created component has been added to the model.

Completion operations that do not require user input can be freely executed here. If
completion requires GUI interaction (such as using an OptionPane), a SwingWorker must
be used to avoid a deadlock on the Swing Event thread. Refer to the Source Code
Documentation of com.cafean.utils.SwingWorker for more information on UI interaction
using the SwingWorker.

��%������#7"������������
���
���	

This method determines if the component has valid data for export. If the prompt
parameter to this method is true, the method should add error or warning messages (via
addMessage) for each of the problems found during the validation. This method should
be called on each component from the model's checkModel method.

See the Source Code Documentation for MainFrame for more information on
addMessage.

���	�������"�"��������������
���
���	

This method and the following getCustomPopupActions can be used to customize the
popup menus that are created for a particular component. This should return a Vector of
JMenuItems, JMenus, and JSeparators representing the complete pop-up menu for this
component.

The default implementation includes:

1. The Show ASCII item for Writeable objects.

This creates an AsciiViewer to display the written representation of the
component. See the Useful Utility Classes section for more information on the
Writeable interface and it's use.

2. The Reference Docs menu.

See the Reference Document Links section for more information on how to
define and use Reference Documentation.

Plug-in API Page 18

3. The Special menu.

This menu is built by creating items and separators from the actions returned by
getCustomPopupActions.

4. The Properties item.

This item creates a Mini-Navigator for the selected object (In this case a
component) that can be used to edit the object's properties. This dialog acts in
most ways like the Navigator and Property View.

Additional menus and menu items can be inserted into the vector by component
extensions.

���	�������"�"$����
����������
���
���	

This method returns an array of Action objects that are used by getCustomPopupItems
to create it's Special menu. The Special menu is intended to contain operations that can be
performed on a component that are used rarely or in special situations. Placing less used
operations here can greatly shorten and simplify the component's popup menu.

The Action array returned may contain null entries to indicate separators.

����2�0��������������
���
���	

This method is called by the UI to verify that the user may remove the component
from it's model without unforeseen side effects. For example: Removing a shared
geometry object used by a dozen heat structures. Returning true from this method implies
that the component removal should be allowed.

This method may request verification from the user via OptionPanes or dialogs.

���%����3���%��������������
���
���	

These methods are accessors for a relative ordering value. This can be used to ensure a
particular sorting order for a set of components. This is the primary attribute used in
sorting when using the Comparator returned by getOrderComparator. This has primarily
been used by plug-ins to preserve the relative ordering of components in imported decks
by setting this value on import and using the order comparator to sort the components
before exporting them.

��(���
����������
���
���	

This method returns a string representation of the component. The default
implementation returns a string in the form: <label> <component number> (<name>).

Plug-in API Page 19

�����������������
�
��������	�

/����6����������

This method returns a string with its surrounding whitespace removed. If the resulting
string is "unnamed" (the default name) then an empty string is returned instead. This was
intended for use in an ASCII export of a component.

"�"�"�����������������

This method creates and shows an editing dialog for the component. For JavaBean™
based components a Mini-Navigator will be created with a Property View on the bottom.
This Property View acts identically to the main Property View and the two can be used
interchangeably. This method may be overridden to create a different editing dialog for a
particular component.

!�+�!�����	��"�
�
�.����
����
�������

Various structures and views in the CAFEAN ModelEditor use the
ComponentListener interface to appropriately respond to changes to components. The
Property View in particular uses this interface to ensure that the properties displayed
reflect what is stored in the component.

���������������� �!"�����������	�

The following AbstractComponent methods relate directly to the ComponentListener
interface. Any or all may be overridden if necessary but the default implementation must
be called from the overriding method.

���	��"�
�
�.����
���������

This adds a structure to be notified when this component is changed, deleted,
connected or disconnected. The given listener will be compared to the current list to
ensure that each is added only once.

����2�	��"�
�
�.����
���������

This removes an existing listener from the list of structures to be notified. Attempting
to remove a structure that is not currently a listener will not cause an error.

����	��"�
�
�	��
����������

This method notifies all structures listening to the component(ComponentListeners)
that its data has changed in some way and should be reloaded or refreshed. This method is
called by the Property View, the undo system and various other operations.

Plug-in API Page 20

����	��"�
�
���������������

Much like fireComponentChanged, this method notifies all listeners that this
component has been deleted. This indicates that views of this component should be
closed or cleared, Navigator nodes removed, etc.

����	��"�
�
�	�

������3�����	��"�
�
�	�

�������������

Like the previous two methods, notifications are sent of connection and disconnection.
Often the disconnection also causes a deleted event to be sent for the Connection. The
connection affected should be passed to this method to allow listeners to update
appropriately.

�������� �!"������
������������	�

To use the ComponentListener interface to track changes in a component, the
following methods must be implemented. Refer to the Source Code Documentation for
the ComponentListener interface for more information.

���"�
�
�	��
����������

This is a notification that the component described in the given event has changed. The
event itself may describe the change in more detail. See the Source Code Documentation
for ComponentChangedEvent for more information on available extensions. Plugin-
specific extensions of this event may be created and used to describe other types of
changes.

���"�
�
���������������

This is a notification that this component has been deleted and views must update
and/or close themselves. This is particularly useful for such things as ASCII views and
editing dialogs for components.

���"�
�
�	�

������3����"�
�
������

�������������

This is a notification that the Connection given has been connected or disconnected.
This has been used to update data related directly to connections, to update
DrawnComponent decorations and to update ASCII views.

Plug-in API Page 21

!�5�	�����
��	�

�����
�

A connection is any object that extends ConnectionBean and is used to represent an
association or connection between two other components. In essence it's an encapsulation
of two ident references with an object describing each reference. Since connections are
also components, much of the section on creating components also applies to
connections.

An important decision when determining if an object should be mapped to a
connection is whether that object can exist in a View without the components it connects
to. Currently, connections will only be included in a view (if the components on either
end are included. This enables connections to be represented as lines drawn between the
DrawnComponents representing the components on each end.

!�5�
��������������"����
�

The following methods are important to the implementation of a Connection object.
Of the methods listed, only the first two must be implemented to create a functional
Connection.

Refer to the Source Code Documentation for Connection and ConnectionBean for
more detailed information on the the methods available for overriding.

���.���	�

�����
�����3����1����	�

�����
����������������������	

These methods retrieve the data object for each side of the connection. These
connection data objects describe the relationship of this connection to the component on
each side. For some connections there may be no need of this descriptive data; the
connection itself may be enough. In these cases an empty ConnectionData extension can
be returned.

Refer to the Source Code Documentation for more detailed information on use an
creation of ConnectionData objects.

���
��"�
��
�	��"�
�
����������
���
���	

This method is used to determine whether the connection can exist without the
components at either end. Non-Independent connections are disconnected and removed if
and when their surrounding components are no longer available. If the connection type
has enough data to justify its existence without being connected then it should return true
here.

��������������
���
���	

Connection overrides label to return the string "Connection." If this is appropriate for
the connection in question then this method does not need to be overridden.

Plug-in API Page 22

������������"���
���������
���
���	

This method is used primarily by the ConnectionSetPanel to build an HTML
description of this connection, the components on either end and the connection data
describing each side.

���	�������"�"��������������
���
���	

This method is used the same way as it is in AbstractComponent derivatives. The
default implementation in AbstractComponent has been overridden here to include only
the Disconnect item.

���������

������������
���
���	

This method is called by the UI to disconnect this connection. This may be overridden
by connection types that require user interaction or additional processing to be completed
when the user disconnects a connection instead of a programmatic disconnection. The
default implementation simply calls disconnect.

!�5�!�	�

�����
����/�
�

By default, a visual connection will be represented in a View by a DrawnConnection
object. DrawnConnection uses the following methods to determine the appearance of the
line drawn between the connected components.

��0��������������
���
���	

This method is used to determine if a DrawnConnection will be created for this
connection if both sides of the connection are present in a View. The default
implementation returns true.

���	�

�����
	�����3����	�

�����
(���������������
���
���	

This is used by DrawnConnection to get the color and stroke to use when drawing this
connection. By default, the color used is the "Connection Color" in global preferences
and the stroke is a new instance of BasicStroke.

���������/
	��"�
�
����������
���
���	

This method creates a new DrawnConnection configured for drawing this connection.
Extensions may override this method to alter the appearance of the connection. See the
section on creating DrawnComponents for more information on how to create and use
DrawnComponents.

Plug-in API Page 23

!�8������#������������
��

It is recommended that plug-ins store their models in a platform independent binary
ModelEditor Document (MED) file format. The remainder of Section 2.7 details the the
implementation of loading and saving logic for a model using a PIB based MED format.

!�8�
�������&�������

Platform Independent Binary (PIB) files consist of a file header section followed by a
series of named blocks. The header section consists of three 80 character strings written
in XDR encoded format:

File Header Section:

File Type Identifier - 80 Character String

Version Identifier - 80 Character String

Description - 80 Character String

The first string consists of the file type identifier which should correspond to the name
of the PibFile class that wrote the file. This class name (with its full package path) is
compared to the result of the getSamPackage function of each MECodePlugin. The file is
processed by the first MECodePlugin that matches this string using that plug-in's open
method.

Although the format of the remainder of the file could be written in any format that
can be understood by the plug-in, it is recommended that only named blocks or "PibBlock
records" be stored in the file. These records each consist of a data block header followed
by the actual data values.

Data Block Header:

Block Type Identifier - 24 Character String

Block Size - Integer containing the size of the block in bytes.
(including this header)

Block Compression Flag - Integer

Block Version - Integer

It is also recommended that where possible, all plug-in specific components should
implement PibBlock directly. Where this is not possible or practical it is recommended
that a uniformly named method (such as "store") be added to the component that returns
an appropriately configured PibBlock instance.

Please Note: PibTool, which is available at http://www.appliedprog.com/PibTool is a
software development tool that can be used to generate source code used to create
platform independent binary, (PIB) files.

Plug-in API Page 24

!�8�!�.����
���������

The recommended procedure for opening an MED file is as follows:

1. Create the new model.
2. Read each PibBlock
3. For each component block, create a component and add it to the model
4. Reconnect any foreign key references in component blocks by calling

reconnectIdentReferences at the AbstractModel level.

The entire process is broken down into a single while loop around repeated calls to
getNextBlock. This method retrieves the name and version information for the next block
in the file. This information can then be used to determine what PibBlock class is
required to read the next component record from the current position. Usually the block
name is compared to an expected set of names to determine the appropriate class.

When loading a model, there are several CAFEAN core object types that must be
handled differently: user defined numerics, view components, drawn components and
annotations. The PibBlocks for these components and methods for loading them have
been defined in the CAFEAN Core. These components, if used by a plug-in, should be
loaded by the core MEDReader class using code similar to that shown in PibFile Example
below.

 ViewComponents, DrawnComponents and Annotations should be loaded using the
loadVisualComponents method inside MEDReader. This method accepts a Vector of
drawing records, a Vector of ViewComponent records and a model reference. The
drawing records Vector should include DrawnComponent records
(DrawnComponentRec), annotation records (DrawnAnnotationRec and
DrawnImageAnnotationRec) and drawn user defined numerics records
(DrawnNumericRec).

 Note that loadVisualComponents should be called only once per model loaded and
should be passed all drawing and view records.

!�8�'�(�2�
���������

Model saving is handled by the plug-in's implementation of the AbstractModel method
saveModel. This method handles the entire save process including file selection,
overwrite prevention, access permissions checks, etc.

The recommended procedure for saving an MED file is as follows:

1. Create and the PibFile instance and open the file
2. Write the plug-in's package header
3. Store the plug-in's global model options
4. Store the plug-in specific components
5. Store ModelEditor core components

More detailed information about this process can be found in the following two
examples.

Plug-in API Page 25

!�8�*���������.���3(�2��#7��"��

The following is an example of a PibFile implementation for a plugin called
"Example." This was not intended as fully working implementation but more as a starting
point for developing a new plug-in. This example and the AbstractModel example in the
next section are intended to be examined together as a model for implementing load/save
logic in a code plug-in.

Plug-in specific components should be handled similarly to SomeComponent below.
In this example it is assumed that SomeComponent implements the "store" method
described above to return a SomeComponentRec instance. It is also assumed that
SomeComponent has a constructor defined that takes a SomeComponentRec as its only
parameter. In this way the component can be easily read from the MED file with only a
few lines of code.

This example uses a very simplistic mapping of PibBlock names to component types.
It is recommended that more sophisticated approaches be evaluated for plug-ins with a
large number of components. A lookup table or standard naming scheme could be used to
implement this mapping and simplify the block loading loop.

public class ExampleMedFile
 extends com.example.Example_file // extend the generated PibFile
{
 /** Loads a model from the given file name. **/
 public AbstractModel loadModel(String fname, boolean prompt)
 {
 Vector viewBlocks = new Vector();
 Vector drawingBlocks = new Vector();
 try {
 int return_flag = OpenImportFile(fname);
 if (return_flag != 0) {
 if (return_flag == 3 || return_flag == 2) {
 MainFrame.addMessage("Incorrect format for a ModelEditor document file." ,
 MessageWi ndow.UserErrorMsg);
 }
 return null ;
 }
 } catch (Exception e) {
 return null ;
 }
 MainFrame.addMessage("Loading " + fname + " please wait..." ,
 MessageWindow.InfoMsg);
 ExampleModel model = new ExampleModel();
 MainFrame.instance.setCurrentModel(model) ;

 String[] blockname = new String[1];
 int [] blockparm = new int [3];
 try {
 while (getNextBlock(blockname, blockparm)) {
 if (blockname[0].equals("EOF")) {
 break ;
 } else if (blockparm[0] < 1) {
 MainFrame.addMessage("Error reading block[" +blockname[0]+ "] from " +fname+ "." ,
 MessageWin dow.InternalErrMsg);
 break;
 } else if (blockname[0].equals("UserConstantRec")){
 UserConstantRec rec = new UserConstantRec(this , blockparm);
 UserDefinedConstant con = MEDRe ader.loadUserConstant(rec, model);
 if (con == null){
 MainFrame.addMessage("Load failed reading user defined constant record." ,

Plug-in API Page 26

 Messag eWindow.InternalErrMsg);
 } else {
 model.addComponent(con, false);
 }
 } else if (blockname[0].equals("UserVariableRec")) {
 UserVariableRec rec = new UserVariableRec(this , blockparm);
 UserDefinedVariable var = MEDRe ader.loadUserVariable(rec, model);
 if (var == null){
 MainFrame.addMessage("Load failed reading user defined variable record." ,
 Messag eWindow.InternalErrMsg);
 } else {
 model.addComponent(var, false);
 }
 } else if (blockname[0].equals("UserFunctionRec")) {
 UserFunctionRec rec = new UserFunctionRec(this , blockparm);
 UserDefinedFunction func = MEDR eader.loadUserFunction(rec, model);
 if (func == nul l){
 MainFrame.addMessage("Load failed reading user defined function record." ,
 Messa geWindow.InternalErrMsg);
 } else {
 model.addComponent(func, false);
 }
 } else if (blockname[0].equals("ViewCompRec")) {
 ViewCompRec c = new ViewCompRec(this ,blockparm);
 viewBlocks.add(c);
 } else if (blockname[0].startsWith("Drawn") || blockname[0].startsWith("Drawing")) {
 // In the Example Plug-in, no records start with Dr awn so this simplified
 // set of block name prefixes c an be used.
 PibBlock block = MEDReader.read DrawingBlock(this , blockname[0], blockparm);
 if (block != null) {
 drawingBlocks.add(block);
 }
 } else if (blockname[0].equals("SomeComponentRec")) {
 // Plug-in specific components follow this example with
 // each component block name in its own if case.
 SomeComponentRec someRec = new SomeComponentRec(this ,blockparm);
 SomeComponent some = new SomeComponent(someRec);
 // pass false for the second parameter as the compo nent already has an ident
 model.addComponent(some, false);
 } else {
 SkipBlock(blockparm[0]);
 }
 }
 model.validateAllComponents();
 MEDReader.loadVisualComponents(drawing Blocks, viewBlocks, model);
 model.reconnectIdentReferences(false , false);
 model.clearDbIds();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return model;
 }
 /** Prepares the given filename to store a model. * */
 public boolean prepareStore(String fileName)
 {
 try {
 OpenExportFile(fileName);
 } catch (Exception e) {
 MainFrame.addMessage("Failed to open file for save: " + fileName);
 e.printStackTrace();
 return false ;
 }
 MainFrame.addMessage("Saving " + fileName + ", please wait..." ,
 MessageWindow.InfoMsg);
 return true ;
 }
}

Plug-in API Page 27

!�8�+�������.���3(�2��#7��"��

The following is an example implementation of the load/save portion of
AbstractModel for a plug-in called Example. Note the use of writePackageHeader to
separate plug-in specific records from the core component records and the use of
MEDReader utility methods to store user defined variables, constants and functions.

This plug-in uses a block called ExampleOptions as its global options object. In this
case ExampleOptions implements PibBlock and thus can be written to the file directly.
For some plug-ins it may be necessary to copy the global options data into a separate
PibBlock instance before storing. Similar logic must be followed when storing plug-in
specific components that do not implement PibBlock directly.

public class ExampleModel
 extends AbstractModel
{
 /**
 * This method saves this AbstractModel to an M ED file using it's current save file.
 * @see #getSaveFile
 **/
 public void saveModel() {
 ExampleMedFile file = null;
 try {
 file = new ExampleMedFile();
 file.prepareStore(getSaveFile().getAbso lutePath(), showProgress);
 // write the package name and PibFile name for use in opening the file later
 file.writePackageHeader("com.example" , "Example_file" ,
 ExamplePluginD ata.LABEL);
 // store the model's global options object (which i s a PibBlock itself)
 ExampleOptions opts = (ExampleOptions)g etModelOptions();
 opts.writeBlock(file);
 // store each component in this model
 storeComponents(file);
 MainFrame.addMessage("Save Complete.");
 } catch (Exception ex) {
 MainFrame.addMessage("Save Failed." , MessageWindow.InternalErrMsg);
 ex.printStackTrace();
 } finally {
 file.Close(true) ;
 }
 }
 /** writes each component in this model to the given ExampleMedFile **/
 private void storeComponents(ExampleMedFile file) {
 Category[] categories = getFullCategories() ;
 for (int i = 0; i < categories.length; ++i) {
 // views and numerics are stored below
 if (categories[i] == AbstractModel.CAT_VIEW
 || categories[i] == AbstractModel.CAT_ NUMERICS) {
 continue ;
 }
 // store each of this model's plug-in specific comp onents
 Iterator it = getComponentIterator(cat egories[i]);
 while (it.hasNext()) {
 AbstractComponent comp = (AbstractC omponent)it.next();
 // if the component implements PibBlock, store it d irectly
 if (comp instanceof PibBlock) {
 PibBlock block = (PibBlock)comp ;
 block.writeBlock(file, false);
 } else {
 // if the component is not a PibBlock then custom c ode
 // must be written to create a PibBlock from the component's
 // current state.
 }

Plug-in API Page 28

 }
 }
 // write the ModelEditor base package header to ind icate that the remainder
 // of the file is core components.
 file.writePackageHeader("com.cafean.client.io.med" , "MED_file" , "ModelEditor");
 // store each view using the ViewComponent' s store(...) method
 Iterator it = getComponentIterator(Abstrac tModel.CAT_VIEW);
 while (it.hasNext()) {
 ((ViewComponent)it.next()).store(file);
 }
 // store the user defined numerics using the MEDRea der utility methods
 it = getComponentIterator(AbstractModel.CA T_NUMERICS);
 while (it.hasNext()) {
 AbstractComponent comp = (AbstractCompo nent)it.next();
 if(comp instanceof UserDefinedFunction){
 MEDReader.storeUserFunction((UserD efinedFunction)comp).writeBlock(file, false);
 } else if (comp instanceof UserDefinedConstant) {
 MEDReader.storeUserConstant((UserD efinedConstant)comp).writeBlock(file, false);
 } else if (comp instanceof UserDefinedVariable) {
 MEDReader.storeUserVariable((UserD efinedVariable)comp).writeBlock(file, false);
 }
 }
 }
}

Plug-in API Page 29

!�9�:
����
��1���

The ModelEditor supports a single undo/redo stack that can be added to by any plug-in
or operation. Undo of single modifications us supported by creating a StateEdit and
adding it to the undo stack as shown below.

StateEdit edit = new StateEdit(component, "Single Modification");
// [modify the component here]
edit.end(); // complete the edit
// post the undo event to the undo stack
UndoableEditEvent event = new UndoableEditEvent(this ,edit);
MainFrame.instance.getUndoManager().undoableEditHap pened(event);

Undo of multiple modifications is supported by creating multiple edits (of any kind)
and appending adding them to a CompoundEdit before posting the event.

CompoundEdit compound = new CompoundEdit();
StateEdit edit1 = new StateEdit(component1, "Modification 1");
StateEdit edit2 = new StateEdit(component2, "Modification 2");
// [modify component 1 here]
// [modify component 2 here]

edit1.end(); // complete edit 1

compound.addEdit(edit1); // add edit 1 to the compound undoable edit

edit2.end(); // complete edit 2

compound.addEdit(edit2); // add edit 2 to the compound undoable edit

compound.end(); // complete the compound edit
// post the undo event to the undo stack
UndoableEditEvent event = new UndoableEditEvent(this ,compound);
MainFrame.instance.getUndoManager().undoableEditHap pened(event);

Note that the above examples assume that the object(s) and/or component(s) being
edited is a StateEditable object with properly implemented storeState and restoreState
methods. Undo/redo for objects that are not properly StateEditable can only be
accomplished by the use of plug-in specific custom undo objects.

Plug-in API Page 30

!�;�	�����
��	�

��������	��"�
�
��

A connectible component is one that can have connections between it and another
component. Connections are necessary for a component when 2-way foreign key
relationships are required, the relationship is to be represented in Views with a
DrawnConnection, or when the connection itself has data values.

Each connectible component must keep track of the connections referring to it for
editing and drawing reasons. The ConnectionList is recommended for use in holding
these connection ident references at runtime. See the Source Code Documentation for
more information on the ConnectionList class and it's use.

In some small cases it may be enough for the connection related method to query the
model for this component's connection related info. In most cases, however, the lookups
in this query would be too expensive to be used in drawing code.

Figure 3 illustrates the use of Connection classes and how they connect components in
the TRACE plug-in. Of the above classes, only Connection and AbstractComponent are
part of the CAFEAN core. The remaining classes are presented only as an example.
Additional connection types can be easily added by a plug-in by creating extensions of
ConnectionBean and ConnectionData.

Plug-in API Page 31

Figure 3. Connection Class UML

!�;�
��������������"����
�

The following methods are important in the implementation of a connectible
component. Additional method overrides and modifications may be necessary to
implement a particular component but the following are sufficient in most cases. Refer to
the Source Code Documentation of AbstractComponent for more information on
available methods.

��
	�

����������������������	

This method is used to determine if this component can connect to a given component.
This is used by the Connect Tool to enable or disable drop-zones on the target drawn
component during a connection operation. The default implementation returns false for
all components and thus must be overridden if connections are required.

���	�

�����
	��
������������������	

This method should return the number of connections connected to this component.
This method is used to dimension connection arrays and to determine if this component
has connections. Normally this simply returns the size of the connection list object
contained in the component or 0 if no connections are supported.

One notable exception to this is a connection such as a TRACE pipe's jun1 reference.
This connection (as well as jun2 and jun3) must be treated separately from those in the
connection list for very plugin-specific reasons. In this case the special connections must
be counted explicitly. This sort of connection handling is more error prone and should be
avoided where possible.

���	�

�����
������������������	

This method builds an array of references to all the Connections connected to this
component. The default implementation simply returns an empty array. The order of the
returned array is considered arbitrary by the CAFEAN core and is assumed only to be
consistent from call to call.

���	�

�����
�����������������	

This adds the given connection to the component's list of connections. The default
implementation simply calls fireComponentConnected. When overriding this method,
ensure that fireComponentConnected is called only once.

�����	�

�����
������������������	

This method removes all connection references from this component. This does not
disconnect the connections, nor does it remove them from the model. This simply clears
the component's list of connections.

Plug-in API Page 32

This method is normally used in undo and copy / paste.

�����

��������������������	

This method is used by connections to remove themselves from a given component.
This method should only be called by Connection itself to ensure a one way path of
disconnection. Calling this method from other places could cause an infinite loop of calls
to Connection.disconnect and the component's disconnect.

������(��������������������������	

This ensures that the given ConnectionData is suitable for a connection from this
component. This is normally used by the default implementation of connectTo to create
custom ConnectionData objects from SpecialConnectionData objects when connection
via the Connection Tool.

GUI user interaction can be used within this method to request more detailed
connection information from the user before making the connection. Returning null from
this method will cancel the connection.

The default implementation of this method returns the ConnectionData passed to it.

���������������������������������	

This method is identical to createSourceData above with the exception that the
connection in question is to this component.

���,���"��	�

�����
����������
���
���	

This method returns all the connections to this component grouped by type with each
type in a separate array. The CAFEAN pre-processor does not currently make use of this
method though it is in use in several specialized plugin-specific editors.

���	�

�����
6������������
���
���	

This method is used to display connections from the perspective of this component.
The default implementation returns the label of the connection and the toString of the
component on the other side. The default implementation is appropriate for most
situations but in some cases there may be a more appropriate name. (For example: Inlet
junction from Pipe 101)

Plug-in API Page 33

!�
<������
�("�������:
�����"��

Units in the CAFEAN pre-processor are extension of Real and represent a value in SI
units and it's conversion between SI and British units.

For some code plug-ins (such as CONTAIN) the analysis code will accept only SI
units and the British units are available only for editing and display. For other codes (such
as TRACE or RELAP5) the model may be exported in either SI or British based on the
user's request. With this in mind, all code plug-ins should support both SI and British
units where possible.

!�
<�
�(�""����
��:
�����
����������

Supporting plugin-specific units in the model is a matter of implementing a set of
methods for mapping unit classes to their SI unit strings.

���:
������"��������������������	

This method is intended for use in a selection dialog for selecting the desired unit for a
particular value. The units editor for UserDefinedNumerics uses this method in particular
to allow the user to choose the type of the generated value.

The returned array should include one unit per line and be in a similar form to:

< unit name > (<unit string>) or Temperature(K)

��
�1��������������������	

This method retrieves a new instance of the plugin-specific unit that corresponds to the
given SI unit string. The given string is assumed to be identical to the string given by the
unit's getSI_Units method and in most cases will be the same string.

���1���&��
��7�����������������	

This method retrieves a new instance of the plugin-specific unit that appears in the
units display at the given index. This method is generally used directly after a unit type is
chosen from the units display given by getUnitsDisplay.

���:
���
��7�����������������	

This pair of methods find the units display index of the Real type or SI unit string
given as a parameter. This is often used to provide an initial selection for a unit selection
dialog using the units display given by getUnitsDisplay.

�������
���
���������������������	

This method should return a new instance of the plugin-specific unit that this plug-in
uses for its dimensionless values. This unit is used as a default value for any unit
references.

Plug-in API Page 34

���#7"���:
������������
���
���	

This method need only be implemented if the model must be export in a particular unit
set (SI or British). Some analysis codes(such as CONTAIN) support input in only a single
unit set and must be export in that set regardless of the current display units for the
model.

!�
<�!�:
����	������

Each unit is an extension of Real that includes a conversion factor for converting from
SI to British units. The SI and British units strings are also included (such as K or m^3).
(Note: In some cases a m^3 will be converted to m3 by the UI for readability.)

Creating each unit class is a very simple matter of extending Real, registering the
appropriate editors and implementing a few methods. Because there is no additional
properties needed in the extension BeanInfo classes are not needed for each unit.

In addition to implementing the following methods, each unit should register a bean
editor for itself in the following manner illustrated by Energy:

���	�
2�����
�����������������������	

This returns the factor to multiply by to convert this unit type from SI to British. The
reverse conversion (as performed by convert and getDisplayValue) is performed by
dividing by the same factor.

���(�4:
��������������������	

This method returns the SI unit string for this unit. For example: Temperature could be
K, Length m, area m^2, volume m^3.

���#6,4:
��������������������	

This method returns the British unit string for this unit. For example: Temperature
could be F, Length ft, area ft^2, volume ft^3.

Plug-in API Page 35

import com.cafean.client.ui.beans.RealBeanEditor;
import com.cafean.client.ui.beans.RealArrayEditor;
static {
 // Register the defined bean editor.
 PropertyEditorManager.registerEditor(Energy. class ,
 RealBeanEditor. class);
 // Register the defined array bean editor.
 PropertyEditorManager.registerEditor(Energy[]. class ,
 RealArrayEditor. class);
}

���:
��6������������
���
���	

This returns the name of this unit as a single word. Often this is the same as the class
name and as such the default implementation uses the base class name as the unit name.

������"���6��������������������	

This returns the unit name in a more human readable form. This is used in various
Real editors for default column names and defaults to an empty string.

Plug-in API Page 36

!�

�������0��������

Model validation for a plug-in is handled by the checkModel method in
AbstractModel and by the use of ValidationTests. checkModel should perform a set of
checks on the model and its component's current state. This method normally utilizes
AbstractComponent's isOkayForExport methods and may optionally add error and/or
warning messages to the MessageWindow.

To use Validation Tests in a plug-in extend ValidationTest (overriding the methods
listed below) and Implement both getValiationTests and getValidationOptions in the
model. The checkModel implementation in AbstractModel will execute any available
(enabled) ValidationTests.

!�

�
�0��������
�������"����
�����

ValidationTest is the base class for model level validation tests that can be executed,
enabled, disabled and configured. These tests are assumed to be full JavaBeans that can
be edited directly in a PropertyView.

When creating a ValidationTest, the following methods must be overridden.

(���
��������"���6����#$�%�
��	&

This is a short, human readable name displayed to the user when executing the test.
This name does not necessarily need to be unique. Using the same display name for
multiple tests is one way to separate variations of a test but hide the separation of
implementation from the user.

(���
�����(����������"���
�#$�%�
��	&

This returns a long, detailed description of this validation test, its user options, and
background information. This method is used by plug-ins as the pop-up help text when
editing the properties of a ValidationTest.

������
���
0��������
�#$�%�
��	&

This method is the actual validation test. If this returns false, the model will be
considered to have failed. Error and warning messages should only be printed to the
Message Window if the printErrors parameter is true. Before export this method will be
called silently to determine if there are errors that require user intervention.

(���
�����6����#$�%�
��	&

The short name of the test used when loading and storing the properties of the test.
This name must be unique amongst a plug-ins validation tests.

Plug-in API Page 37

!�

�!�0��������
��������������
����������

To use ValidationTest in a plug-in, the following AbstractModel methods must be
overridden.

0��������
����=>����0��������
������#$�%�
��	&

This retrieves the set of tests (both enabled and disabled) from the model. When called
from checkModel the tests are assumed to be properly configured and ready to be
executed.

0��������
%"���
�����0��������
%"���
��#$�%�
��	&

This method retrieves an options object that contains all the configured properties of
the model's ValidationTests. ValidationOptions itself is a wrapper object for name/value
pairs. This options object may be extended to include load and store methods for saving
these options to the model's MED file.

Plug-in API Page 38

!�
!�:��
���������"�����0��/

The CAFEAN pre-processor Property View is a JavaBeans™ based property editing
panel. It uses Java's Introspector class and the plugin-supplied BeanInfo classes to
instantiate a set of PropertyEditors for the current target beans.

No special code or configuration is required to use the Property View for editing of
component or sub-component objects. By default, the ModelEditor will use the Property
View for all bean-based models. Also, if the target is a ComponentElement, no special
code is required to refresh the properties shown as the Property View is a
ComponentListener and will be updated automatically.

The Property View bean handling has been expanded to include handling for
additional optional interfaces and methods to allow more detailed customization of the UI
by the target beans. The following sections explain in detail the capabilities available to
plug-in authors to tailor a more responsive and organized set of PropertyEditors for a
bean.

Note: Because this is a JavaBeans™ based system, to be properly represented all
objects edited must conform to the JavaBeans™ architecture specification.

!�
!�
��������"����	�
���������
�������

PropertyController is an interface describing an object that has methods to determine if
its properties are currently enabled, active, required, etc. This interface is essential for the
more complex components and can come in handy for even the simplest bean.

���������'
�����	���	�("�
����

The Property View always includes two check-boxes: one for showing Optional
properties and the other for showing Disabled properties. The logic behind these two
check-boxes is actually reversed from the check-box labels.

The Property View uses the method isPropertyEnabled to determine if a property is
enabled or disabled and isPropertyRequired to determine if it is optional or required.
These checks are made each time the view is refreshed.

To be able to support proper editing of a restart, the isRestartEditable method was
added. This method is checked if the containing model is currently editing a restart.

Refer to the Source Code Documentation of PropertyController for more detailed
information on the implementation of isPropertyEnabled and isPropertyRequired.

���������$�)�
*����

Various codes have tables and arrays that can be altered but cannot be resized. For
some codes this condition holds true only for editing a restart. To handle these situations
the isResizable and isRestartResizable methods were added. Currently the
RealArrayEditor handles these methods. New plugin-specific editors must implement
support for this feature where it is appropriate.

Plug-in API Page 39

�������+�����
�����(�	��
��

In most code plug-ins the relative order of properties is an important part of their
presentation to the user. Since the JavaBeans™ architecture does not provide a means for
ordering properties beyond the Preferred attribute of a PropertyDescriptor, this
functionality has been added to the Property View.

To implement attribute ordering for an object the getAttributeIndex method must be
implemented. This method returns a relative index for the property name given. Normally
the returned value is the index of the given property in a statically defined array. A large
integer (such as 999) should be returned in most cases for properties that have no attribute
index defined.

!�
!�!�$���������,���"�

Attribute Groups are a convenient way of breaking up a large number of properties
into logical groupings. Each group appears as table of properties in the Property View
with its own expansion icon and group label. Property editors are not instantiated or
refreshed for groups that are not expanded.

To support Attribute Groups in a bean, a mapping between attribute names and
attribute groups must be implemented using the following three static methods.

���$��������,���"��������

This returns an array of the Attribute Group names available in this object. This is a
static method and normally returns a static final array.

Note that the General group should not be included in this array. The General group is
made up of those properties that do not appear in any other Attribute Group.

���$��������,���"�������

This returns the name of the Attribute Group that the given property is part of. If the
property should appear in the General group then null should be returned.

���$������������,���"�������

This method returns an array of the property names that are included in the given
Attribute Group. An empty array should be returned for groups that do not exist or are
empty.

Note: Returning null from this method could cause errors.

Plug-in API Page 40

!�
'�:��
��1�����������������

A Registered Dialog is any dialog that has been added to the MainFrame's list of
registered child dialogs. Registering a dialog enables the following functionality:

� Registered dialogs appear in the Windows menu.

� Using MainFrame's setWindowLocation for a registered dialog will offset the
dialog's location to avoid directly overlapping (and hiding) another registered
dialog.

� Dialogs registered with a model will be hidden when that model is closed.

� Registered dialogs that implement the RefreshableDialog interface will have their
unitsChanged method called from MainFrame.resetAllUnits and their refresh
method called after undo or redo.

In addition to the above use of the registered dialog list allows plug-ins to implement
features such as:

� Ensuring that only one of a particular editing dialog is open at a time.

� Bringing a registered editing dialog to the foreground.

� etc.

���1����������������������

This static method adds the given dialog to the list of registered dialogs. If the model
parameter is not null, the dialog will be assumed to be related to the given model and will
be closed when the model is closed. If the model parameter given is null the dialog will
be assumed to be unrelated to any model.

���1�����������������������

This static method returns an Iterator into an unmodifiable List of the registered
dialogs. If the optional AbstractModel parameter is given, only those dialogs related to
the given model will be retrieved.

����2�1����������������������

This static method removes the given dialog from the list of registered child dialogs. If
the dialog was previously associated with a model then that model should be provided
when removing the dialog from the list.

Plug-in API Page 41

!�
*�	������?�
������!��0��/

Current 2D View customizations include adding plug-in specific toolbars and mouse
handlers as well as display element specific insertion handlers.

!�
*�
�$���
����������

A set of standard toolbars are available in every 2D View, regardless of the plug-in
that includes:

� Main – Select, Pan, Zoom, Connect and Insert tools.

� Clipboard – Cut, Copy, Paste, Paste Special and Find.

� Annotation – Ellipse, Image, Line, Polygon, Rectangle and Text Annotations.

� Numerics – User Defined Variables and Constants.

In addition to those above, toolbars are automatically created for each of the visual
parent Categories returned by the model's getCategories method. The buttons included on
these toolbars are shortcuts buttons for the Insertion Tool. For most current plug-ins these
toolbars are sufficient as most additional user interaction can be accomplished via pop-up
menu items.

Plug-ins requiring additional toolbars add them using the DrawnView method
addToolbar. It is reccommended that toolbars be added from within the MEPlugin
method loadViewMenuItems.

Note that the toolbar's name will be shown in the pop-up menu to show or hide the
toolbar. Refer to the Source Code Documentation of addToolbar for more tailed
information on its use.

!�
*�!��
������
�@�
�������
�������
����������
�������

Some visual elements require an insertion procedure that is more complex than the
simple behavior provided by the Insert Tool. To customize this behavior, a more
advanced Insertion Handler can be created for the element.

Currently there are two advanced handlers available:

� RectangularInsertHandler – Allows rectangular bounds selection before insertion.
This handler is used by the Rectangular Annotation and by all Display Beans.

� AbstractPathHandler – Allows path point selection before insertion. This handler
is used by the Line Annotation and the Polygon.

To use either of the handlers above for a visual element, simply implement the
Insertable interface for that element and define getNewInsertHandler to return a new
instance of the handler. So, for the rectangular handler, define getNewInsertHandler to
return a new instance of RectangularInsertHandler.

To use the path handler, a subclass must be created that extends AbstractPathHandler
and implements the following methods. Note that when creating this extension, the path

Plug-in API Page 42

handler must maintain a reference to the element being inserted. This reference is
essential when completing the insert and determining the closure point.

��
����
����

This method completes the insertion by retrieving the current path of points from the
handler and setting them on the element. For a line annotation, this method simply places
line points at each point and segments between them.

��	���������
�

This method must determine if left-clicking on the given point should cause the
completion of the insert. For line annotations this simply determines if the left-click is on
the last point in the path.

!�
*�'�	�����
��	������������@�
�����

The mouse interaction with visual elements can be intricately controlled with
MouseListener and MouseMotionListener methods implemented directly in drawn
components or display beans. In some cases, however, these methods are insufficient and
an entirely new tool is required. In these cases a new custom MouseHandler extension
can be created and added to the view.

Custom mouse handlers can be added and removed from a View by using the
ZoomablePanel methods addMouseHandler and removeMouseHandler. It is
reccommended that mouse handlers be added from within the MEPlugin method
loadViewMenuItems.

The following steps are required to create a custom MouseHandler extension.

� Create a new class that extends MouseHandler

� Override the MouseListener methods required (mousePressed, etc.)

� Override the MouseMotionListener methods required (mouseDragged, etc.)

� Override activate and deactivate to properly initialize and dispose of the
handler's listeners and resources.

� Override getCurrentCursor to return an appropriate cursor for the handler.

� Add the handler to the view's toolbar from within loadViewMenuItems with
ZoomablePanel's addMouseHandler method.

Refer to the Source Code Documentation for the MouseHandler class for more
detailed information on the implementation and management of mouse handlers.

Plug-in API Page 43

!�
+�:������:�������	������

The following section details a list of classes and interfaces that are likely to be used in
the UI portion of any code plug-in. Subsequent versions of this manual may include
additional classes as they mature.

!�
+�
��
��������

The following interfaces may be used to enable additional functionality for a particular
object or editor.

�����������
�������

This interface is used primarily by the AsciiViewer to determine what components can
be viewed and how to view them. It specifies a single method, write, which writes an
ASCII representation of the object to the given PrintWriter.

Implementing this method for a code plug-in allows the user the convenience of being
able to examine the ASCII representation of a component or object directly as it is being
modified without having to export the entire model to a file between modifications.

�����#����
��3�	��"�
�
�#����
���
��������

These interfaces indicate an object that maintains a reference to it's model and/or
AbstractComponent parent. ComponentElement is a direct extension of ModelElement
and is implemented by AbstractComponent.

It is recommended that all sub-components implement ComponentElement and
maintain a reference to their direct parent in the reference hierarchy. This allows the
CAFEAN property editing and undo architectures to properly store the state of and update
the views of any objects and components being edited.

�������"�
��
���
�������

This interface is similar to ModelElement in that it includes an accessor for the object's
model but in this case the interface is intended for use by PropertyEditors that require a
model reference to edit a given value. The ComponentSelectionEditor mentioned below
is a good example of a model dependent editor.

&�7(�������
.����
����
�������

This interface describes a listener for selection changes in a particular BeanBox. Each
BeanBox has its own list of listeners accessable via addBoxSelectionListener and
removeBoxSelectionListener. For more detailed information refer to the Source Code
Documentation for BoxSelectionListener and BeanBox.

Plug-in API Page 44

!�
+�!�&��
�#������

The following editors are provided to simplify the creation of new code plug-ins.
Special attention should be paid to the first three (ComponentSelectionEditor,
RealBeanEditor and NamedIntEditor) as they are likely to be used in every code plug-in.

	��"�
�
�(�������
#������	����

Also called an "Ident Editor", this ModelDependent editor is used to edit an integer
that is a foreign key reference to a component. This editor includes a label displaying the
toString of the target component (or none) and a Select button to choose the component
ident to use.

Note that this editor is not necessarily intended to be used directly. Direct use implies
that any component from any Category can be selected. This is rarely the case. Normally,
extensions are created that pass a particular Category to the constructor of
ComponentSelectionEditor to narrow the selection range to a given set of components. In
some cases the Category may be created specifically for use in the editor extension.

1���&��
#������	����

This editor used to edit Real values. Plugin-specific units must register themselves
with this PropertyEditor directly. Refer to the section on plugin-specific units for more
information on this registration.

6�����
�#������	����

Also known as an Enumeration Editor, the NamedIntEditor is used to edit an integer
that is an enumerated set with a description for each value. For instance: a
OffOnSelEditor would edit an integer with value 0 (Off) and 1 (On). Values that fall
outside of the defined range are allowed if set from outside the editor but once changed
can only be reset to the original value with undo.

This editor is never used directly as the values and descriptions cannot be determined
at run time. To use this editor, create an extended class that passes the possible integer
values and their string descriptions to the NamedIntEditor constructor.

Note: Extensions requiring the Namelist functionality of the NamedIntEditor should
instead extend the NamelistNamedIntEditor class described below.

Refer to the Source Code Documentation for more information on how to extend and
use a NamedIntEditor.

6�������#������	����

This interface describes an editor for a property that conforms to the Namelist variable
concept in which a property is actually a combination of a property and a boolean
activation state. Editors of this type assume that setPropertyActive is defined in the object
containing the property.

Plug-in API Page 45

The following similarly named editors support the NamelistEditor interface. Refer to
the Source Code Documentation for more detailed implementation details for the
NamelistEditor interface.

6��������
�#������	����

This is an editor used for integers that conform to the Namelist variable concept as
defined by NamelistEditor. This editor may be used directly.

6�������&�����
#������	����

This is an editor used for boolean values that conform to the Namelist variable concept
as defined by NamelistEditor. This editor may be used directly.

6�������1���#������	����

This editor is an extension of RealBeanEditor used to edit Reals that conform to the
Namelist variable concept as defined by NamelistEditor. This editor may be used directly.

6�������6�����
�#������	����

This is an extension of NamedIntEditor used for enumerated integers that can be
activated and deactivated as defined by NamelistEditor. Like NamedIntEditor, this editor
cannot be used directly but instead must be extended to include values and descriptions.

!�
+�'�,:��:��������

The following GUI utility classes have been used extensively in existing code plug-ins
and are likely to be of use in the development of any plug-in.

�����(������	����

This is a sorting wrapper for TableModel instances to allow sorting the displayed table
by a user-selected column. TableSorter includes a method to add an appropriate mouse
listener to the table header for choosing the column to sort by.

Refer to the Source Code Documentation for TableSorter for more detailed
implementation information.

%"���
��
��	����

This is an encapsulation of JOptionPane that should be used for all option panes in the
CAFEAN pre-processor. This class handles the centering of option panes on the screen
rather than the MainFrame (if it is the parent) for single window arrangement.

Plug-in API Page 46

'���������
����������

All of the class and resource files that comprise a plug-in should be placed in a jar file
located in SNAP's plug-in directory. The plug-in jar file's manifest should include a
MEPluginData-Class entry that indicates the location of the plug-in's MEPluginData class
extension. The jar file may also include the runtime and post-processor plug-ins. For
example, the manifest for the TRACE plug-in is:

Manifest-Version: 1.0
Plugin-Class: nrcsnap.trace.TraceCodePlugin
ClientPlugin-Class: nrcsnap.trace.TraceClientCodePl ugin
MEPluginData-Class: nrcsnap.trace.TracePluginData

In this case, the jar file includes the preprocessor, runtime and post-processor plug-ins.
The MEPluginData- Class entry identifies the class nrcsnap.trace.TracePluginData as an
extension of MEPluginData.

Plug-in API Page 47

*�����"��������������
�(���"��
�

Scripting support in the preprocessor client is available via a Python interpreter.
Scripts can be run from batch mode with the MACRO batch command. Using this
scripting interface gives the user direct access to the internal structures of the
ModelEditor. It is important to note that in some cases this direct access may have
unintended affects on the structures being accessed.

A discussion of the facilities and classes available to support scripting is provided
below along with several examples. Though some examples in this document use the
TRACE plug-in, the methodology should apply equally well to any JavaBean™ based
plug-in.

Plug-in API Page 48

*�
�&������
������
��������

The following Python methods have been provided to assist in accessing desired
components and outputting messages to the user:

� addMessage(message)

This method is used to print messages to the user as Message Window notices. Note
that multiple line messages in the Message Window may not appear properly. In these
cases it is recommended that multiple addMessage calls be used.

Example:
addMessage(“Script beginning.”)

� addError(message)

This method is used to print messages to the user as Message Window internal errors.
As with addMessage , multiple line messages in the Message Window may not appear
properly and should use multiple addError calls instead.

Example:
addError(“Script failed.”)

� getModel()

This method is used to retrieve the current model for the script executing. The current
model in batch mode is either the last model imported/opened or the model specified
in the MACRO batch command.

Example:
addMessage(“Script running with model: %s” \
 %(getModel().getName()))

� findComponent(catName,number)

This method is used to retrieve a given component by it's component number and
category name from the script's current model. The category names are identical to
those used by the Navigator. findComponent uses getModel internally to call
findComponentByCC on the current model. Scripts which deal with multiple models
simultaneously will need to call findComponentByCC directly for each component
required.

Example:
addMessage(“Found pipe: %s” \
 %(findComponent(“Pipes” , 2).toString()))

Plug-in API Page 49

*�!�	����	$�#$6�	������

Familiarity with parts of the following core CAFEAN classes is important when
writing more advanced Python scripts. As a minimum the user should be familiar with
Real class presented below.

*�!�
�1����	����

Real is a base class for all floating point numbers in the ModelEditor. It's main
purpose is to centralize the handling of unit types and conversions for it's subclasses and
to allow the display and editing of values in either SI or British based on the user's current
preference. Each plug-in will have its own set of Real derivatives used to display various
types of values (such as length or temperature). Currently, the CAFEAN core has only
Time(seconds) and Angle(degrees) available as examples. Refer to the programmer's
documentation for each plug-in for more information on what unit types are available.

From a scripting perspective, the important methods to note for Real are:

� getDoubleValue()

This method returns the current SI value of the Real. All floating point values are
stored as their SI value and converted to British only when requested by the model for
display.

� toString()

This method returns a formatted string representation of the Real's current value in the
model's current units(SI/British).

� toString(unitType)

This method returns a formatted string representation of the Real's current value using
the given unit type as either Real.SI or Real.BRITISH .

� getDisplayValue(unitType)

This method returns the double value of the Real in the requested unit type. Unit type
is either Real.SI or Real.BRITISH . Note that any calculations performed with Real
values that assume British units requires that getDisplayValue be used in place of
getDoubleValue .

*�!�!�$�������	��"�
�
��$��������	����

AbstractComponent is the base class for all Components in the ModelEditor. Objects
such as TRACE's Pipes, Tees and Control Systems are all AbstractComponent
derivatives. Though nearly all script interaction with AbstractComponents will use
component-specific properties it is important to note the few things they have in
common:

� getComponentNumber()

This method returns the component's number. What this number means can be very

Plug-in API Page 50

plug-in and component specific. For most components this amounts to the
component's unique identifier in that model. In the TRACE plug-in this actually
corresponds to the component number input.

� label()

This method returns a string describing the type of the component. For a TRACE pipe,
“Pipe” is returned. This is usually similar but not necessarily the same as the name of
the Category for the component.

� toString()

This returns a human-readable string representation of the component. This is usually
of the form: “<label> <component number> (<name>) ” but can differ
significantly between component types. In most cases this is also the string displayed
in the Navigator node for the component.

� getCategory()

This returns the Category that the component is part of. This category can be used in
component lookups in the model (in place of the category name) or simply to display
the general grouping of a particular component.

Plug-in API Page 51

*�'��1$	#�������
�#7��"���

Below is a brief description of the general types of TRACE components, followed by a
set of examples, explanations and special cases that illustrate the use of the ModelEditor's
Python scripting capability within the context of the TRACE plug-in. It is important to
note that in general the TRACE plug-in variable naming convention matches the TRACE
input manual. Also, the accessor methods for all variables conform to the Java™
language standard for JavaBean™ method names. Some exceptions to the TRACE
naming convention were required to handle special cases of input constraints (foreign
keys) and data organization (vessel axial levels). Refer to the programmer's
documentation for the TRACE plug-in for specific information on available values and
their data types.

*�'�
�@���������	��"�
�
��

Hydraulic components fall into three general groupings: boundary condition
components such as Break or Fill, fluid components such as Pipe or Tee and the 3D
Vessel. Each of these groupings has a slightly different internal structure and must be
treated differently. As always, refer to the programmer's documentation for more
specifics.

Boundary Components (Fill and Break) are the simplest of general groupings as they
contain only component-level data. The majority of the values contained in these
components will match the input manual names exactly. The following examples show
the retrieval of various values from a Fill component.
fill = findComponent("Fills" ,8)
addMessage("* jun1 ifty ioff")
addMessage("%13s %13d $13d" \
 # the junction number to which the FILL is connected
 %(fill.getJun1CC(), \
 # FILL type
 fill.getIfty(), \
 # FILL fluid state option
 fill.getIoff()))

Fluid components are hydraulic components that have one or more fluid segments. A
fluid segment is a collection of cell and edge data and is normally referred to as main
tube or side tube in the TRACE input manual. In many cases the main tube is assumed for
the discussion of elements of a fluid component with a single fluid segment. Note that in
the TRACE plug-in there is no phantom cell. All phantom cell compensation is handled
in the ASCII export code.

The structure of the following classes is especially important when handling the data
of a fluid component:

���� FluidComponent

This class is the base class for all fluid type components. It contains accessors for
retrieving it's FluidSegments, Cells(getCellAt), and Edges(findEdgeAt). It is

Plug-in API Page 52

important to note that when 2 fluid components are connected, they share edge data
for the edge that is connected. In the TRACE input format, this data is entered for both
edges and assumed to be equivalent. To ensure that the proper edge data is being
retrieved the findEdgeAt method must be used instead of getEdgeAt . Also, because
of this sharing of data, some values (such as fric and grav) will appear to be inverted if
two inlets or two outlets are connected. Another important set of methods are used to
retrieve the junction numbers for the inlet, outlet (and side) junctions of a fluid
component. getJun1CC , getJun2CC and getJun3CC retrieve the inlet, outlet and side
tube junction numbers respectively.

���� FluidSegment

A FluidSegment is one tube of a hydraulic component. A Tee component contains two
FluidSegment, one main tube, one side tube. Each segment contains an array of Cells
and Edges that can be retrieved with getCells and getEdges respectively. In
addition, FluidSegments contain some fluid power. Refer to the programmer's
documentation for more information on additional FluidSegment variables.

��+������,�!"���
��
"��

The two most important examples of fluid components are Pipe and Tee. The
following examples show the retrieval of various values from each type.

#7��"���
A���"��	��"�
�
���,�
����������$������

An example of general pipe data access
pipe = findComponent("Pipes",2)
addMessage("* ncells nodes jun1 jun2 epsw")
addMessage(" %d %d %d %d %f" \
 %(pipe.getFluidSegment(0).getCellsCount(), \
 pipe.getNodes(), \
 pipe.getJun1CC(), pipe.getJun2CC(), \
 # Note the use of getDoubleValue()
 pipe.getEpsw().getDoubleValue()))
addMessage("* ncells nodes jun1 jun2 epsw")
addMessage(" %d %d %d %d %f" \
 %(pipe.getFluidSegment(0).getCellsCount(), \
 pipe.getNodes(), \
 pipe.getJun1CC(), pipe.getJun2CC(), \
 # Note the use of getDoubleValue()
 pipe.getEpsw().getDoubleValue()))

#7��"���!A�	���������
����������0��������������"��	��"�
�
���

This is an example of retrieving data directly from a pipe's cells in
order to calculate the pipe's total volume.
totalVolume = 0.0 # initial value of 0.0
idx = 0 # Current cell index.
 # Note that all indexes are in C notation {0 to (n-1)}
while idx < pipe.getCellCount():
getCellCount is the total number of cells in the component.
 cell = pipe.getCellAt(idx)

Plug-in API Page 53

 totalVolume += cell.getVol().getDoubleValue()
 idx += 1 # next cell
addMessage("Total Volume: %1.3f m^3" % totalVolume)

#7��"���'A����"�������#���������������"��	��"�
�
��

This example shows retrieving data from a pipe's edges for
displaying each flow area
idx = 0 # Current edge index.
addMessage("%4s %14s %14s %14s" \
 %("edge" , "flow area" , "hyd diam" , "grav"))
getEdgeCount is the total number of edges
while idx < pipe.getEdgeCount():
 edge = pipe.findEdgeAt(idx)
 addMessage("%4d %14s %14s %14f" % \
 ((idx+1), \
 edge.getFa().toString(), \
 edge.getHd().toString(), \
 edge.getGrav()))
 idx += 1 # next edge

#7��"���*A�	���������
����������0����������������	��"�
�
���

This example shows retrieving volumes from a tee side-tube to
calculate the total volume.
ncells1 = tee.getFluidSegment(0).getCellsCount()
ncells2 = tee.getFluidSegment(1).getCellsCount()
idx = 0 # Current cell index.
while idx < ncells2:
 # offset by ncells1 to get the proper index
 cell = tee.getCellAt(ncells1 + idx)
 totalLength += cell.getDx().getDoubleValue()
 totalVolume += cell.getVol().getDoubleValue()
 idx += 1 # next cell

��+�����+'�-������ �!"�����

The 3D Vessel component contains an array of VesselLayers, each with an array of
Cells and 3 arrays of Edges (1 per axis). The recommended method for retrieving Cells
from a Vessel component is getCellAt(z,p) , where z is the axial level and p is the
planar cell index. Edges are similarly retrieved with getEdgeAt(p,z,face) where z and
p are axial level and planar cell respectively. The remaining Vessel data closely follows
the TRACE input manual for naming. Refer to the programmer's documentation for more
information on Vessel component data structures.

The following example shows how to retrieve and display the hydraulic diameter for
each cell of a Vessel.

#7��"���+A�0������	��"�
�
���,�
����������$������

nasx = vessel.getNasx() # Number of axial vessel levels
planars = vessel.getNrsx() * vessel.getNtsx(); # number of planar cells
addMessage("%5s %6s %14s %14s %14s" % \
 ("axial" ," planar" , "hdxr" , "hdyt" , "hdz"))

Plug-in API Page 54

level = 0 # current axial level
while level < nasx:
 planar = 0 # current planar cell
 while planar < planars:
 addMessage("%5d %6d %14s %14s %14s" % \
 ((level+1), (planar+1), \
 vessel.getEdgeAt(planar,level,0).getHd().toString(), \
 vessel.getEdgeAt(planar,level,1).getHd().toString(), \
 vessel.getEdgeAt(planar,level,2).getHd().toString()))
 planar += 1 # next planar cell
 level += 1 # next axial level

��+���+�.����
���������

The properties of note for a Heat Structure are an array of HeatCells (cells), an array
of SupplimentalRods (nhot) and the MeshpointTable (mesh). Each HeatCell has an outer
and inner Surface that contains the boundary condition data for the cell. The
SupplementalRods contain the initial temperatures (rftn) and the fuel burnup (burn)
array. Additional upper and lower boundary temperatures are stored in the heat structure
(average rod) and in each SupplementalRod. The remaining data closely follows that
specified in the TRACE input manual. Refer to the TRACE plug-in programmer's
documentation for further information.

#7��"���5A�@����(���������,�
����������$������

This block shows an example of retrieving heat cell length
and surface heat flux for the inner and outer surfaces.
nzhstr = htstr.getCellsCount() # number of axial heat cells
nodes = htstr.getNodes() # number of radial nodes

addMessage("Cell Length and Inner Surface Heat Flux")
addMessage("%6s %14s %14s" %("cell","length","inner flux"))
cell = 0 # current axial heat cell
while cell < nzhstr:
 c = htstr.getCells(cell)
 addMessage("%6s %14s %14s" \
 %(cell+1, \
 c.getDhtstrz().toString(), \
 c.getInner().getQflxbc().toString()))
 cell += 1

*�'�!��
������������

The following files have been included as more extensive examples of data access for
the TRACE plug-in. Each of these examples has been tested to ensure correct syntax and
can be executed with the accompanying Python.batch file.

� fill.py

This file contains examples that apply well to both Fill and Break components. The
variables used are specific to Fill.

Plug-in API Page 55

� htstr.py

This file contains various examples of data access for a Heat Structure component.
This includes surface heat flux and initial temperature array access for the average rod.

� pipe.py

This file contains examples of fluid component related access. Cell and edge data
access is shown for use in calculating total cell lengths/volumes and retrieving the
flow areas and hydraulic diameters of edges.

� tee.py

This file contains additional fluid component examples that deal with access to the
second fluid segment.

� vessel.py

This file contains examples of access to vessel cells and edges by axial level and
planar cell.

� trace_util.py

This file contains an unfinished set of python wrappers for hydraulic components that
provides an example of more advanced uses of the existing scripting functionality.

Plug-in API Page 56

	1. Introduction
	2. Preprocessor Plug-in Implementation
	2.1 Plug-in Interface Classes
	2.2 Plugin Interface Operations
	2.2.1 Processing Batch Commands
	2.2.2 Adding Menu Items
	2.2.3 Submitting Jobs
	2.2.4 Plugin Preferences
	2.2.4.1 Loading and Saving Preferences
	2.2.4.2 Editing Preferences

	2.2.5 Essential Core Classes for a Code Plugin

	2.3 The Multi-View Architecture
	2.4 Creating a Model
	2.4.1 Component Categories
	2.4.2 Foreign Key Relationships
	2.4.3 Methods to Implement
	2.4.4 Model Options
	2.4.5 Root Components
	2.4.6 Component Number Groups

	2.5 Creating Bean Based Components
	2.5.1 Methods to Implement
	2.5.1.1 Useful Utility Methods

	2.5.2 The ComponentListener Interface
	2.5.2.1 AbstractComponent Methods
	2.5.2.2 ComponentListener Methods

	2.6 Creating Connections
	2.6.1 Methods to Implement
	2.6.2 Connection Drawing

	2.7 ModelEditor Documents
	2.7.1 The PIB Format
	2.7.2 Loading a Model
	2.7.3 Saving a Model
	2.7.4 PibFile Load/Save Example
	2.7.5 Model Load/Save Example

	2.8 Undo and Redo
	2.9 Creating Connectible Components
	2.9.1 Methods to Implement

	2.10 Plugin-Specific Unit Types
	2.10.1 Supporting Units in the Model
	2.10.2 Units Classes

	2.11 Model Validation
	2.11.1 ValidationTest Implementation
	2.11.2 ValidationTest Methods in the Model

	2.12 Using the Property View
	2.12.1 The PropertyController Interface
	2.12.1.1 Disabled and Optional
	2.12.1.2 Re-sizable
	2.12.1.3 Attribute Ordering

	2.12.2 Attribute Groups

	2.13 Using Registered Dialogs
	2.14 Customizing the 2D View
	2.14.1 Adding Toolbars
	2.14.2 Insertion Handlers and the Insertable Interface
	2.14.3 Creating Custom Mouse Handlers

	2.15 Useful Utility Classes
	2.15.1 Interfaces
	2.15.2 Bean Editors
	2.15.3 GUI Utilities

	3. Packaging a Plug-in
	4. Preprocessor Python Scripting
	4.1 Built-in Python Methods
	4.2 Core CAFEAN Classes
	4.2.1 Real Class
	4.2.2 AbstractComponent Abstract Class

	4.3 TRACE Plug-in Examples
	4.3.1 Hydraulic Components
	4.3.1.1 Example Scripts
	Example 1: Pipe Component General Data Access.
	Example 2: Calculation of Total Volume for a Pipe Component .
	Example 3: Display of Edge Data for Pipe Component.
	Example 4: Calculation of Total Volume for a Tee Component .

	4.3.1.2 3D Vessel Component
	Example 5: Vessel Component General Data Access.

	4.3.1.3 Heat Structures
	Example 6: Heat Structure General Data Access.

	4.3.2 Included files

