

 Applied Programming Technology, Inc.
 Bloomsburg, PA 17815

Python Directed Job Stream Tutorial

November 2020

SNAP
Symbolic Nuclear Analysis Package

Python Directed Job Stream Tutorial I

Table of Contents

1. Introduction .. 1

1.1. Definitions ... 1

1.2. Finding More Information ... 2

1.3. Setup ... 2

2. Exercise 1 – Simple Python Directed Job Stream .. 3

3. Exercise 2 – SNAP Variables and Optimization ... 7

4. Exercise 3 – Keywords and File Search ... 11

5. Exercise 4 – Bundled Files ... 16

6. Exercise 5 – TRACE-PARCS Coupled Job Stream ... 21

7. Exercise 6 – Uncertainty Quantification ... 24

Python Directed Job Stream Tutorial 1

1. Introduction
This document introduces the Python Directed Job Streams added in SNAP version 3.1.1. This update

allows Python scripts to control analysis codes execution in a Job Stream, and includes the ability to call

the Model Editor as a library to work with input models during execution.

1.1. Definitions
This section includes a definition of commonly used terms that will appear throughout this document.

 Job Stream

A SNAP Job Stream is a user defined sequence of external application executions, where the

outputs from applications may be passed on as the input to additional applications. Locally

accessible files may be included as inputs to job streams, in addition to the

 Calculation Server

The Calculation Server, included with SNAP, acts as a single node cluster for executing analysis

codes and managing their inputs and outputs. The Calculation Server communicates with Job

Status and the Model Editor to provide feedback to users as to the status of executed tasks.

 Stream Manager

The Stream Manager processes Job Streams and marshals tasks for execution. One Stream

Manager is launched to manage each job stream.

 Python Director

The Python Director is the portion of the Stream Manager that executes Python directed

streams.

 Task

The task is a single instance of an application or analysis code execution in a Job Stream. One

example would be executing TRACE on an input file.

 Actor

An Actor is an object that represent an application or analysis code execution in a Python

stream. Once created, adding an actor to the running stream will schedule it for execution.

Python Directed Job Stream Tutorial 2

1.2. Finding More Information
More detailed information about the Python bindings for SNAP and PyPost can be found in their

respective User’s Manuals and generated API documentation.

 SNAP User’s Manual

o In the Model Editor: Help →Help Contents

o [SNAP Installation]/manuals/SNAPUsersManual.pdf

 SNAP API Documentation:

o [SNAP Installation]/doc/python/snap/index.html

 PyPost User’s Manual

o [AptPlot Installation]/manuals/PyPostUsersManual.pdf

 PyPost API Documentation:

o [AptPlot Installation]/pypost/doc/pypost/ index.html

1.3. Setup
The following applications definitions are assumed throughout this tutorial.

 TRACE – A version 5.0 Patch 5 TRACE executable. Version 5.1350 was used during the

development of this tutorial.

 AptPlot – Apt Plot Version 7.0+ must be installed and selected in the Plotting Tools entry of the

Configuration Tool.

 Python – Either the Jython interpreter included with SNAP or CPython version 3.6+/2.7.

Python Directed Job Stream Tutorial 3

2. Exercise 1 – Simple Python Directed Job Stream
This tutorial will walk you through the process of building a simple Python Directed stream and

submitting it to your local Calculation Server.

1. Open the SNAP Model Editor.

2. Open the Exercise1.med model included with this tutorial.

The standpipe model is a simple calculation of a 4m long 6” diameter schedule 80 Pipe, heated from

0.4m to 3.6m. It uses interactive controls to define the boundary conditions for the fill, as well as the heat

flux on the outside of the pipe wall heat structure.

The next steps will add a new Python Directed job

stream to the model.

3. Right-Click the Job Streams node in the

Navigator and select the New menu item.

4. Select the Python Directed stream type.

5. Press the Finish button.

This creates a new stream with the Stream Type set

to Python Directed. This will automatically expand

the Job Streams node in the Navigator and select

the new stream.

6. Set the Name property to

“Python_Standpipe”.

7. Set the Relative Location to “DEMO/”.

Python streams include a number of

properties not available in other

stream types. Refer to the SNAP User’s

Manual for more detailed information.

Python Application lets you select the

Python application that will be used to

execute this Python Directed stream.

The application is one of the Python

application definitions specified in

Configuration Tool

The Python Script Location property

determines whether a Python script

will be edited with the model (Edited

Here) or referenced on disk (File on

Python Directed Job Stream Tutorial 4

Disk). This exercise will use the Edited Here mode.

The Python Script property is either, the path to the Python script or the content of the script itself,

depending on the value of the Python Script Location property.

Bundled Files allows you to include files with the submission. Typically these are data files or additional

input files required by the calculation. This will be covered more in later exercises.

The Parametric Table property provides many of the features of the Tabular Parametric job stream type

to Python Directed streams. Its user interface in the stream is also essentially identical to that used by

Tabular Parametric. It can be thought of as a shortcut to simplify the creation of a table that will be

made available to the Python script.

8. Edit the Python Script property.

This will open the Python source editing window showing an empty script. Menu items and toolbar

buttons provide the standard Import/Export and Cut/Copy/Paste operations. At the bottom of the

window is a label indicating the cursor location as a line and column. The current number of lines in the

script is displayed to the right of the cursor location. The Help button at the bottom left opens the SNAP

User’s Manual to the Python Directed Job Streams section.

The items in the Insert Example menu will insert one of a variety of code snippets that illustrate

everything from opening an MED file to running a job with one of the supported analysis codes.

9. Expand the Insert Example menu.

10. Select the Code Support → Running TRACE menu item.

This inserts example code to execute a pair of sequential TRACE executions using the stand pipe model

that is currently open. The “Examples” in the source editor are intended to give a broad view of what is

possible rather showing the simple or most concise way to do something. In this case, the standpipe MED

is referenced with an absolute file path. Since we know that it will be bundled with the stream there is a

simpler way to locate the MED.

Python Directed Job Stream Tutorial 5

The next steps will convert the portions of the script that open a MED file on disk to use the

standpipe.med file that will automatically be bundled with the stream.

11. Delete the following lines from the script.

samples_dir = Path('C:/Program Files/SNAP/Samples/TRACE')

med = samples_dir.joinpath('Standpipe', 'standpipe.med')

standpipe = model_editor.open_model(med)

12. Insert the following lines in their place:

stream = streams.get_stream()

standpipe = model_editor.open_model(stream.get_bundled_file('Exercise1.med'))

The next steps will simplify the creation of the restart case by defining the tracin, and trcrst inputs of the

Transient step during its creation.

13. Remove the following lines from the script:

transient = TraceActor('Transient')

Inputs can also be specified later using the >> operator.

This indicates that the 'Short' restart case should be

used as the TRACE input for the transient case.

standpipe.case('Short') >> transient.tracin

The TPR file is passed from the steady state run.

steady_state.trctpr >> transient.trcrst

But it could be a file location.

Path('/path/to/steady_state.tpr') >> transient.trcrst

These lines illustrate how to use the insertion (>>) operator to connect a model’s restart case (‘Short’)

and a TRACE TPR file (‘trctpr’) to the Transient job. This is an important feature in more complex streams

or when restarting portions of a completed stream. Since we don’t need this complexity, we’ll just

replace it with something simpler.

14. Enter the following line in their place:

transient = TraceActor('Transient',

 tracin=standpipe.case('Short'),

 trcrst=steady_state.trctpr)

Notice that the parameters to the TraceActor, tracin and trcrst, are TRACE input file names and match

the inputs used in the graphical TRACE job step. Passing a file source as either of these parameters will

make that file available to the resulting job, automatically exporting, copying, or referencing the file, as

necessary

These inputs and all of TRACE’s outputs are also available as properties of the TraceActor object. In this

example (trcrst=steady_state.trctpr) the trctpr property is being used as the trcrst input, ensuring that

the Steady_State TPR output will be copied in as the Transient job’s restart file.

Python Directed Job Stream Tutorial 6

15. Press OK to close the save the script.

16. Right-click the Python_Standpipe job stream in the Navigator and select the Submit Stream to

Local menu item.

17. Press the OK button.

Job Status will automatically open and select the Python_Standpipe job stream.

18. Double-Click Python Standpipe in the Job List table in Job Status.

This will open a console to display the stream log output. The log describes the stream as it runs with

start notifications, finished notifications, etc. For example, the following lines indicate that the two

TRACE jobs (Steady_State, and Transient) finished successfully.

[<DATE>] - [Python: snap.streams] Steady state completed with status Completed.

[<DATE>] - [Python: snap.streams] Transient completed with status Completed.

Adding your own messages to the stream log will be covered in later exercises.

The stream details panel, typically shown when submitting graphical streams, is available by pressing the

details button in the bottom left corner of the window.

This completes Exercise 1.

Python Directed Job Stream Tutorial 7

3. Exercise 2 – SNAP Variables and Optimization
This exercise demonstrates some advanced capabilities of the Python Directed Job Streams by executing

a series of TRACE cases until a predefined output state is achieved. Previously, this would have required

multiple job streams and job stream sequences. A simple implementation of Newtons method will be

used to iterate the heat flux values of the Stand Pipe model until the last heated cell in the pipe has a

void fraction of 0.5.

1. If you are continuing from exercise 1, save the model as Exercise2.med.

If not, open Exercise2.med included with this tutorial.

2. In the Navigator, expand the Control Systems → Control Blocks category node.

3. Select Interactive Variable -1.

The value of interactive variable -1 is set by a SNAP Variable called ‘heatflux’. We’ll be using this Variable

to alter the boundary heat flux on Heat Structure 31 and heat up the pipe.

4. Create a new Python Job Stream as described in the previous exercise.

5. Set the Name of the stream to “Opt_Standpipe”.

6. Edit the Python Script property.

We’re going to use SNAP streams, TRACE models and jobs, and PyPost, so the script will need to import

those modules.

7. Add the following lines to the script.

from snap import streams

from snap.codes import trace

from pypost.codes.trace import TRACE

To update properties or add new jobs we’ll need to get a reference to the currently running stream. This

reference is typically cached to make the script more readable.

Python Directed Job Stream Tutorial 8

8. Add the following line to the script.

stream = streams.get_stream()

To get to the model in Exercise2.med it will first need to be opened.

9. Add the following lines to the script.

model_med = stream.get_bundled_file("Exercise2.med")

model = trace.open_model(model_med)

target = 0.5

tolerance = 0.01

The first two lines above get the MED file location from the stream’s list of “bundled files” and open the

file as a TRACE model. The last two lines define the “target” void fraction, and the “tolerance” for

convergence.

When using a Job Stream component, the model’s MED file is automatically “bundled” with the stream.

The stream’s bundled files are transmitted with the stream to the server during submission. This can be

plot files, table data, input models, and anything else required by the stream. These files are then

extracted on the server side just before the script begins. They can be accessed using the stream’s

get_bundled_file(name) and find_bundled_files(wildcard) methods.

10. Add the following lines to the script.

def submit_case(index, heat_flux):

 model.set_variable("heatflux", str(heat_flux))

 actor = trace.TraceActor(name="SS_{:02}".format(index), tracin=model)

 stream.add(actor)

 stream.wait()

This is a new python method that sets the ‘heatflux’ variable in the standpipe model, and submits the

model to the calculation server as a new job named SS_<INDEX>. This allows the calculation to be re-run

up to 99 times before overriding any data. This method will be used to run each iteration. The next step

will extract the void-fraction at the end of the pipe.

11. Add the following lines to the script to the same submit_case method from the previous step.

 TRACE.openPlotFile(actor.trcxtv_out.shared_location)

 void = TRACE.getData(0, "alpn-21A20").maxYval()

 TRACE.closeAll()

 return void

This method extracts the maximum value from the ‘alpn-21A20’ plot variable. This is the value that will

be used to steer the calculation. The next step will add the check_result method.

Python Directed Job Stream Tutorial 9

12. Add the following lines to the script.

def check_result(index, heat_flux, void):

 if abs(void - target) < tolerance:

 stream.logger.critical(

 "Target Void {:.3g} reached after {} steps with a Heat Flux of {:.3g}".

 format(void, index, heat_flux))

 return True

 return False

The check_result method will be used to determine when the optimization has been completed. This will

be called before each iteration.

13. Add the following lines to the script.

def calculate_offset(void1, void2, dFlux):

 error = target - void2

 slope = ((void2 - void1) / dFlux)

 return error / slope

The calculate_offset method calculates the heatflux offset for the next iteration. This is a simple

implementation of Newton’s Method.

14. Add the following lines to the script.

heat_flux = -2E5

dFlux = -1E5

index = 1

void1 = submit_case(index, heat_flux)

These lines initialize the first heat flux, and the initial heat flux step size for the iteration. The first TRACE

job is also subumitted using the default index and heat_flux. The next objective is to start writing a text

file that will contain all of the iteration values.

15. Add the following lines to the script.

result = open("results.csv","w")

result.write("Iteration, Heat Flux, Void Fraction, Error, Delta Heat Flux\n")

result.write("{:>9}, {:>11.3g}, {:>13.3g}, {:>10.3g}, {:>15.3g}\n"

.format(index, heat_flux, void1, (target-void1), dFlux))

These lines open a text file in the job stream directory named “results.csv”. This file will be updated to

contain a log of all of the heat flux, void fraction, error signal, and heat flux offsets for each case. The

values are formatted to ensure that they can be read into a spreadsheet if necessary.

Python Directed Job Stream Tutorial 10

16. Add the following lines to the script.

while not check_result(index, heat_flux, void1):

 index += 1

 heat_flux += dFlux

 stream.logger.critical("Submitting case {} with Heat Flux of {:.3g}".

format(index, heat_flux))

 void2 = submit_case(index, heat_flux)

 dFlux = calculate_offset(void1, void2, dFlux)

 result.write("{:>9}, {:>11.3g}, {:>13.3g}, {:>10.3g}, {:>15.3g}\n".

 format(index, heat_flux, void2, (target-void2), dFlux))

 result.flush()

 void1 = void2

result.close()

This portion of the script is the main loop of the optimization. The methods added to the script earlier are

used to dial in the heat flux until the desired void fraction is reached.

Note: The final line, result.close(), must not be indented.

The next few steps will submit the stream and see how it runs.

17. Press OK to close the source editor.

18. Right-click on the Opt_Standpipe stream and select Submit Stream to Local.

19. Press OK to submit the stream.

Job Status will automatically open and select the Loop_Standpipe job stream.

20. Double-click Opt_Standpipe in the Job List table in Job Status.

Like the previous exercise, this will open a console to display the stream log output. The result.csv file

generated by this job stream should be similar to the following. Note that the actual number of iterations

and calculated values may vary between code versions.

Iteration, Heat Flux, Void Fraction, Error, Delta Heat Flux

 1, -2e+05, 0.000957, 0.499, -1e+05

 2, -3e+05, 0.0848, 0.415, -4.95e+05

 3, -7.95e+05, 0.665, -0.165, 1.41e+05

 4, -6.54e+05, 0.585, -0.0855, 1.51e+05

 5, -5.03e+05, 0.403, 0.0974, -8.03e+04

 6, -5.84e+05, 0.52, -0.0201, 1.38e+04

 7, -5.7e+05, 0.504, -0.0041, 3.51e+03

This completes Exercise 2.

Python Directed Job Stream Tutorial 11

4. Exercise 3 – Keywords and File Search
This exercise explores the process of creating and assigning keywords to jobs and using those keywords

to select which output files will be processed based on search criteria. To do this, the logic retrieving the

void fraction from each job will need to be moved to the job as a Post-Execute function. Using PyPost to

extract the void fraction in the stream script is convenient but, to apply task keywords, the process

needs to happen in the task.

To promote better retention and save space, this exercise will begin to gloss over topics explained in

previous exercises.

1. If you are continuing from Exercise 2, save the model as Exercise3.med.

If not, open Exercise3.med included with this tutorial.

2. Create a new Python Job Stream as described in the previous exercises.

3. Set the Name of the stream to “Search_Standpipe”.

4. Edit the Python Script property.

As before, this script will use streams, TRACE models and jobs, AptPlot, and PyPost, so it will need to

import those modules.

5. Add the following lines to the script.

from snap import streams

from snap.codes import trace

from pypost.codes.trace import TRACE

from pypost.codes.aptplot import APTPLOT

This stream will be executing the TRACE code using the model in Exercise3.med.

6. Add the following lines to the script.

stream = streams.get_stream()

model_med = stream.get_bundled_file("Exercise3.med")

model = trace.open_model(model_med)

This section is nearly unchanged from the previous exercise. It opens the bundled MED file for the current

exercise so it can be used by actors later on.

7. Add the following lines to the script.

def update_task_keywords():

 from snap import tasks

 from pypost.codes.trace import TRACE

This will define the post-execute function used to find the void fraction for each TRACE job. You’ll notice

that the function starts with import statements. Since pre- and post-execute functions are executed

inside the job rather than in the stream, any modules required by the function must be included. In this

case, the SNAP Tasks module (snap.tasks) and the TRACE support module for PyPost are both imported.

Python Directed Job Stream Tutorial 12

8. Add the following lines to the script.

 xtv_file = tasks.get_output_file("trcxtv")

This line retrieves the XTV output file definition (snap.tasks.OutputFile) for this job from the snap.tasks

module. For more detailed information about the snap.tasks module, refer to the SNAP User’s manual

and API documentation listed in section 1.2 on page 2.

9. Add the following lines to the script.

 file_index = TRACE.openPlotFile(xtv_file.location)

 alpn_vector = TRACE.getData(file_index, "alpn-21A20")

The output file’s “location” is a Path from the built-in Python module ‘pathlib’. Nearly all path related

properties in the SNAP package are handled using pathlib.

The openPlotFile method returns the “file index” of the newly opened file. In this case, there’s only one

open file so the index will always be zero. In more complex streams it may be a good idea to use the

index to avoid inadvertently reading data from the wrong file with getData(..).

10. Add the following lines to the script.

 tasks.set_keyword("void_fraction", alpn_vector.maxYval())

This will set the value of the ‘void_fraction’ keyword to the largest void fraction value in the cell at the

top the standpipe. Note that, for this to work, the keyword must be added to the Actor before it is added

to the stream. Adding keywords to an Actor will be shown later in this exercise.

11. Add the following lines to the script.

 TRACE.closeAll()

It’s not strictly necessary to close the open files at this point because the post-execution function is nearly

the last thing the job does before shutting down. It is, however, a good habit to get into.

12. Add the following lines to the script.

 tasks.get_logger().critical("Heat flux {} resulted in a void fraction of {:.3f}."

 .format(tasks.get_keyword("heatflux"),

 alpn_vector.maxYval()))

Log messages like this one can be a great help when diagnosing problems with a new stream. Note that

this message will appear in the Task log rather than the stream log. To send a message to the stream

log, use the get_stream_logger method instead of get_logger.

Python Directed Job Stream Tutorial 13

13. Add the following lines to the script.

starting_flux = -1.0E5

for index in range(1, 10):

 current_flux = starting_flux * index

 model.set_variable("heatflux", str(current_flux))

 actor = trace.TraceActor(name="SS_{:02}".format(index), tracin=model)

This section is essentially identical to the loop in the last exercise. It creates a loop using heat flux values

between -1.0e5 and -1.0e6, applies the value to the model, and passes it to a new TRACE actor.

14. Add the following lines to the script.

 actor.add_custom_keyword("heatflux", current_flux)

 actor.add_custom_keyword("void_fraction", "Unknown")

As mentioned above, the task can’t set keywords that haven’t already been added by the stream. The

first line creates a keyword to hold the heatflux value set on the model for reference. The second adds

the ‘void_fraction’ keyword that will be assigned by the post-execute function and used find the task’s

outputs later.

15. Add the following lines to the script.

 actor.post_execute = update_task_keywords

This line illustrate simplicity of pre and post execute scripting in python streams. It indicates to the actor

that it should pass the contents of the update_task_keywords method to the task on the server side

where it will be executed. This process uses the built-in Python ‘inspect’ module to retrieve the source

code for the function and insert it into the task.

16. Add the following lines to the script.

 stream.add(actor)

Add the TRACE job to the stream's queue.

17. Add the following lines to the script.

stream.wait()

Pause the script until the stream has no jobs left to execute. Make sure that that this line is not indented.

In this case, the script should add all of the actors to the stream before waiting.

18. Add the following lines to the script.

Python Directed Job Stream Tutorial 14

xtv_files = (stream.search().label_eq("trcxtv")

 .task_kw_gt("void_fraction", 0.5)

 .results())

The stream file search module (snap.stream.search) is used to find files in either the running stream or a

completed locally accessible stream. It can search for files by file type, actor name, task or file keywords,

file names, etc.. This feature is intended to be used as file and keyword based conditional logic. It could

be to perform additional post-processing on only those tasks that meet a specific set of criteria. It could

also be used to eliminate failures from a series of jobs.

In this case, the search is being used to get the plot file (trcxtv) of every job with a void fraction over 0.5.

The files are returned as a list of search results (snap.stream.search.SearchResult). A similar search could

be used to find restart files and create a restart job for each result.

For more detailed information about the snap.streams.search module, or anything in the SNAP package,

refer to the SNAP User’s manual and API documentation listed on page 2.

19. Add the following lines to the script.

for file in xtv_files:

 file_index = TRACE.openPlotFile(file.location)

This loops over the plot files, opening each one. The ‘location’ property of a search result, like the task

output file, is a Path object from the pathlib module.

20. Add the following line to the script.

 alpn_vector = TRACE.getData(file_index, "alpn-21A20")

Get the void fraction values for the top (cell 20) of the stand pipe (pipe 21).

21. Add the following line to the script.

 APTPLOT.plotChannels(alpn_vector)

This line adds the time dependent void fraction data to the AptPlot virtual graph. This includes the

engineering units and channel labels. For more detailed information about the plotChannels method, the

pypost.codes.aptplot, or anything in the PyPost package, refer to the User’s manual and API

documentation listed on page 2.

22. Add the following lines to the script.

 TRACE.closeAll()

As always, closing any files you’re no longer using saves memory and is good practice.

23. Add the following line to the script.

Python Directed Job Stream Tutorial 15

APTPLOT.printFile("PDF", "VoidFraction.pdf")

This method writes all of the time dependent void fraction data to VoidFraction.pdf in PDF format. It

currently supports PDF, SVG, JPEG, TIFF, PNG, Postscript, EPS, and EMF.

Make sure that that this line is not indented or the file will be written several times rather than once.

24. Add the following line to the script.

APTPLOT.clearData()

Following good practice, this removes all data from the virtual graph.

25. Press OK to close the source editor.

26. Right-click on the Search_Standpipe stream and select Submit Stream to Local.

27. Press OK to submit the stream.

Job Status will automatically open and select the Search_Standpipe job stream.

28. Wait for the stream to complete.

If you would like to follow the stream’s execution, double-click on the stream name in the Job List. This

will open the stream console to display the stream’s log messages as they appear.

29. Expand the Job Status Navigator to Runs/DEMO/Search_Standpipe/

30. Right-click on Search_Standpipe/ in the Navigator.

31. Select the Open Folder item from the pop-up menu.

This will open a local file browser for the directory that contains the stream.

32. Open VoidFraction.pdf in your local PDF viewer.

This simple plot contains the void fraction

values at the top of the standpipe for

each of the jobs with a void fraction over

0.5.

This completes Exercise 3.

Python Directed Job Stream Tutorial 16

5. Exercise 4 – Bundled Files
This exercise focuses on the Bundled Files feature of the SNAP streams module and its user interface in

the Model Editor. These features will be illustrated by creating a set of TRACE restart jobs using bundled

input files.

Additional information about these features can be found in the SNAP User’s manual and API

documentation listed on page 2.

1. Open Exercise4.med included with this tutorial.

2. Create a new Python Job Stream as described in previous exercises.

3. Set the Name of the stream to “Bundled_Standpipe”.

4. Edit the Bundled Files property.

The center piece of the Bundled Files window is the table of bundled files. The toolbar at the top of the

dialog contains buttons to Add (), Remove (), Move Up (), Move Down (), and Sort (), the

table. The Help button, at the bottom left, will open the SNAP User’s manual to the section describing

this window.

Each bundled file in the table has a Target Location and a Local Location. The target location is used to

determine where to place the file under the bundled files directory. The local location is the path to the

file on the local computer. The current model is always bundled with the stream and thus is always

included as the first row in the table. When adding files to this table, the dialog will attempt use a

relative path to the selected file, where possible.

5. Press the Add button on the toolbar.

6. Select the file standpipe_short.inp included with this tutorial.

This will include standpipe_short.inp with the stream, accessible with stream.get_bundled_file(…). Note

that the target location of a file can be changed to suit the stream. For example, if you were including a

Python Directed Job Stream Tutorial 17

plot file named simply, “trcxtv”, you could decide to include this with a target location of

“peak_void_fraction.xtv”.

7. Press the Add button again.

8. Select the RestartInputs/ directory included with this tutorial.

The RestartInputs/ directory contains four TRACE inputs: short1.inp, short2.inp, long1.inp, and long.inp.

9. Press the Select button to complete the addition.

This will add every file in the RestartInputs/ directory to the bundled files table. Adding files to the table

automatically selects the newly added files. This makes it easy to see exactly which files were in the

directory. As a side effect, it also makes it easy to remove the newly added files.

A target location has been automatically assigned for each of the selected files relative to the directory

that was added. This can be useful for situations that require a large number of similarly named files in a

directory structure.

10. Select the newly added RestartInput/ files, if they aren’t already selected.

11. Press the Remove button on the toolbar.

This will remove the restart inputs that were just added.

12. Open a file local filesystem browser such as Windows File Explorer.

13. Navigate to the directory containing this tutorial.

14. Drag the RestartInputs/ directory into the bundled files table.

Files and directories dragged into the table are treated exactly the same as those added using the Add

button.

15. Select the newly added RestartInput/ files, if they aren’t already selected.

16. Press the Remove button on the toolbar.

This will, again, remove the restart inputs that were just added.

17. In the local file browser, open the RestartInputs/ directory.

18. Drag the Long/ and Short/ directories into the bundled files table.

This adds the files in both directories to the bundled files table. Notice that the target locations do not

include the RestartInputs/ directory. This time they have been generated relative to the Long/ and

Short/ directories that were selected.

19. Press the OK button to close the Bundled Files window.

Now that the files are bundled, the remainder of the exercise will look at how these files should be

accessed.

Python Directed Job Stream Tutorial 18

20. Edit the Python Script property.

21. Add the following line to the script.

from snap import streams

from snap.codes import trace

from snap.codes.trace import TraceActor

This simple stream only needs the streams and TRACE modules.

22. Add the following line to the script.

stream = streams.get_stream()

model = trace.open_model(stream.get_bundled_file("Exercise4.med"))

ss = TraceActor("SS", tracin=model)

stream.add(ss)

The first actor is a steady state calculation using the automatically bundled Exercise4.med.

23. Add the following line to the script.

stream.add(TraceActor("Long1",

 tracin=stream.get_bundled_file("Long/long1.inp"),

 trcrst=ss.trctpr))

The second actor, “Long1”, is a restart of the steady state. In this case, both the input file (tracin) and

the restart input file (trcrst) are being passed to the constructor. The input file (long1.inp) is accessed

using the target location shown in the Bundled Files window. The restart input file (trcrst) will be copied

from the restart output (trctpr) file of the steady state job.

24. Add the following line to the script.

short1 = TraceActor("Short1")

ss.trctpr >> short1.trcrst

Rather than passing everything in the constructor, the second actor is using the “right shift” or

“insertion” (>>) operator to request that the restart input file be copied from the restart output of the

steady state job.

The most commonly used input files (tracin, trcrst, etc.) for each actor type can usually be passed to the

constructor. This is a convenience to reduce the amount of code you have to write. Not all of an actor’s

inputs are available this way. Refer to the documentation listed on page 2 for more detailed information

about the actors for each supported code.

25. Add the following line to the script.

stream.get_bundled_file("Short/short1.inp") >> short1.tracin

stream.add(short1)

Python Directed Job Stream Tutorial 19

The insertion (>>) operator can also be used with path-like objects such as those returned by

get_bundled_file(). In this case, using the bundled short1.inp as the input file for Short1. Once it’s

connected, it’s added to the stream.

The get_bundled_file method is a convenient way to access bundled files individually. A second method

is available to access multiple files: find_bundled_files.

26. Add the following line to the script.

for file in stream.find_bundled_files("**/*2.inp"):

The find_bundled_files method returns a list of paths to the bundled files with names that match the

given pattern. The pattern is assumed to be a wildcard or “glob” expression such as ‘*.inp’. Wildcard

patterns use “special characters” such as ‘*’ to match a series of any character, ? to match any single

character, ‘**' to match any files and zero or more directories and subdirectories, and bracketed

expressions such as [abc] to match a single character included in the brackets (a, b, or c).

In this case, the pattern matches two of the four bundled restart input: Long/long2.inp and

Short/short2.inp. These files will be used to create two additional restart jobs.

27. Add the following line to the script.

 actor_name = file.stem

Because find_bundled_files returns a list of Path objects, we can use a bit of Python magic to get the

name of the file without its suffix. So, for the two files found, long2.inp and short2.inp, the actor_name

will be “long2” and “short2” respectively.

28. Add the following line to the script.

 stream.add(TraceActor(actor_name, tracin=file, trcrst=ss.trctpr))

This last line adds a TRACE actor to the stream using an actor_name based on the file name. It’s using

the bundled file as its input model and the restart output of the steady state as its restart input.

29. Press OK to close the source editor.

30. Right-click on the Bundled_Standpipe stream and select Submit Stream to Local.

31. Press OK to submit the stream.

Job Status will automatically open and select the Bundled_Standpipe job stream.

32. Double-click Bundled_Standpipe in the Job List table in Job Status.

Like the previous exercise, this will open a console to display the stream log output.

33. Note the log messages that appear after each job finishes.

[<DATE>] - Received finished notification for [1] SS on localhost

Python Directed Job Stream Tutorial 20

[<DATE>] - Received finished notification for [2] Long1 on localhost.

[<DATE>] - Received finished notification for [5] short2 on localhost.

[<DATE>] - Received finished notification for [3] Short1 on localhost.

[<DATE>] - Received finished notification for [4] long2 on localhost.

There we can see that all five jobs were submitted and executed successfully.

This completes Exercise 4.

Python Directed Job Stream Tutorial 21

6. Exercise 5 – TRACE-PARCS Coupled Job Stream
This tutorial will walk you through the process of building a coupled TRACE-PARCS job stream and

submitting it to your local Calculation Server.

1. Open the SNAP Model Editor.

2. Open the model

Samples/TRACE/Coupled_TraceParcs_Python_Streams/trace_parcs_coupled_mslb.med

included in the distribution.

This is an engineering template model representation of the TRACE-PARCS coupled MSLB model. It

consists of a coupled steady state task which is then fed into a coupled transient task. In this example,

the steady state is represented by two model nodes, one which is the TRACE steady state model, and the

other is a steady state PARCS model. The TRACE model includes a PARCS Mapping and TRACE restart

case. The transient portion of this model consists of a model node which references the restart case

contained in the TRACE model in conjunction with a PARCS transient model.

This figure below contains a job step representation of the job stream being setup in this exercise.

3. Right-Click on the Job Streams category in the Navigator and create a new Python Directed job

stream.

4. Set the Name of the new job stream to “Coupled_Demo”.

5. Set the Relative Location to “DEMO”.

6. Edit the Python Script property.

Python Directed Job Stream Tutorial 22

This Python stream is going to use SNAP, streams, TRACE and PARCS models, and Model Editor

utilities so it will need to import those modules.

7. Add the following lines to the script:

import snap

from snap import streams

from snap.codes import trace, parcs

from snap.codes.trace import TraceActor

import snap.model_editor

This example uses models that are included with SNAP so we’ll use the SNAP installation directory to

locate and open these models.

8. Add the following lines to the script

trace_path = snap.get_install_dir() / "Samples" / "TRACE"

models_path = trace_path / "Coupled_TraceParcs_Python_Streams" / "models_py"

tm = trace.open_model(models_path / "trace_ss_and_tr.med")

pm_ss = parcs.open_model(models_path / "parcs_ss.med")

pm_tr = parcs.open_model(models_path / "parcs_tr.med")

Now that the models are open, we can create a TraceActor to execute them. Because the TRACE model

has the MAPTAP file active, it will be automatically included.

ss = TraceActor("mslb_ss_coupled")

tm >> ss.tracin

pm_ss >> ss.parcs_inp

That’s all we need to setup the coupled TRACE-PARCS steady state job. The next steps will submit the job

and wait for its completion.

stream = streams.get_stream()

stream.add(ss)

stream.wait()

stream.logger.critical("Coupled Steady state completed with status {}.".format(ss.task_status))

Once the steady state has completed we then can submit the coupled transient. In order to do this the

TRACE and PARCS restart files must first be connected to a new TraceActor.

9. Add the following lines to the script

tr = TraceActor("mslb_tr_coupled")

ss.parcs_restart_out >> tr.parcs_restart_in

ss.trctpr >> tr.trcrst

Lastly, the transient TRACE model for this run is included in the TraceModel as a case. That model and

the transient PARCS model will then need to be connected to the TraceActor.

10. Add the following to the script

Python Directed Job Stream Tutorial 23

tm.case("trace_tr") >> tr.tracin

pm_tr >> tr.parcs_inp

Now that the transient is configured we just need to submit the job.

11. Add the following to the script

stream.add(tr)

stream.wait()

stream.logger.critical("Coupled Transient completed with status {}.".format(tr.task_status))

The next few steps will submit the stream and monitor the results

12. Press OK to close the source editor.

13. Right-click on the Coupled_Demo stream and select Submit Stream to Local.

Job Status will automatically open and select the Coupled_Demo job stream.

14. Double-click Coupled_Demo in the Job List table in Job Status.

15. Note the log messages that appear after the steady-state and transient jobs finish.

[Python: snap.streams] Coupled Transient completed with status Completed.

16. Close the model

This completes Exercise 5.

Python Directed Job Stream Tutorial 24

7. Exercise 6 – Uncertainty Quantification
This exercise introduces the DAKOTA Uncertainty Quantification (UQ) support in Python Directed

streams. After this exercise is complete the analyst will be familiar with defining the parameters of a UQ

calculation in a TRACE model using sensitivity coefficients, extracting figures of merit from resulting plot

files, and the DAKOTA report generation.

This exercise will take a null-transient W4Loop model and perform an uncertainty quantification on the

fuel gap gas conductivity factor.

1. Open UQ_W4Loop.med included with this tutorial.

2. Create a new Python Directed stream as described in previous exercises.

3. Set the Name of the stream to “UQ_Stream”.

4. Activate the Uncertainty Quantification property by checking the check-box next to its editor.

The Uncertainty Quantification property is used to configure the uncertainty quantification data

structures that will be used in the stream. These structures can be created and configured directly by

Python code in the stream, as we’ll see later. This property simplifies the process by generating much of

that code for you.

5. Edit the Uncertainty Quantification property.

This dialog is used to define the labels for the Figures of Merit, select the input variables, and define the

distribution used to generate the input variable values. Finally, the Report tab allows the contents of the

generated DAKTOA report to be configured.

Python Directed Job Stream Tutorial 25

6. Add a new Figure of Merit (FoM) by pressing the new () button next to the Figures of Merit

label.

7. Set the Name of the FoM to “FuelTemp”.

8. Check the Upper Limit check box for the “FuelTemp” FoM.

9. Select the Variables tab.

This tab contains the model input values that are modified as part of the Uncertainty Quantification. The

TRACE plug-in allows UQ stream types to modify sensitivity coefficients, boundary component table data,

and variable values. For this exercise, we will be modifying the sensitivity coefficient that controls the

gap conductance of the fuel rods.

10. Add a new variable by pressing the new () button at the top of the dialog.

11. Ensure that the Sensitivity Coefficients entry is selected in the variable category list.

12. Select “gapCondSV” and press the Next button.

13. Press the Next button to apply the coefficient to all heat structures.

14. Select the Factor radio button and press the Finish button.

15. Select the Distributions tab.

16. Set the Name of distribution d1 to “gapc”.

17. Set the Distribution type to Normal.

18. Set the μ (Mean) value to 1.0.

19. Set the σ (STDV) value to 0.1.

Python Directed Job Stream Tutorial 26

This defines Normal distribution about 1.0 with a standard deviation of 0.1. This will result in values that

range between 0.7 and 1.3, as shown in the Probability Distribution graph. The distribution could be

further modified with the Minimum and Maximum fields.

20. Select the Report tab.

21. Set the Document Format to “Microsoft Word Document (.docx)”.

22. Set the Title Page to “Title Page Note” by pressing the S button to the right of Title Page.

23. Activate the Header and set the text to “Fuel Rod UQ”.

24. Activate the Footer and set the text to “TRACE Class”.

The report will include three plots. The first is a plot that shows the figure of merit value vs the sensitivity

coefficient, the second shows the figure of merit value vs the iteration index, and the third shows the

sensitivity coefficient values vs the iteration index.

25. Add a new plot by pressing the () button below the Plotted Values label.

26. Select “FuelTemp” in the list and press the OK button.

27. Check the Use Independent check-box for the new plot.

28. Click in the Independent column in the FuelTemp row and press the S button that appears.

29. Select the “gapc” entry and press the OK button.

30. Add a second new plot and select “FuelTemp” in the list.

31. Add a third new plot and select “gapc” in the list.

The final step in setting up the initial uncertainty properties is to define the number of executions that

will be performed. This can be entered manually or calculated to ensure the desired confidence level.

Python Directed Job Stream Tutorial 27

32. Select the DAKOTA Properties tab.

33. Activate the Order property by checking the check box.

34. Set the value of the Order property to “2”.

35. Press the Calculate () button next to the Number of Samples field.

This uses the selected Sampling Method, Probability and Confidence levels to determine the number of

samples required for the targeted number of Figures of Merit. The number of samples indicates the

number of input models that will be generated.

36. Press Yes to proceed.

37. Press the OK button to close the dialog.

Now that the Uncertainty Quantification structures been configured, the next section will create a script

to execute the analysis.

Python Directed Job Stream Tutorial 28

38. Edit the Python Script property.

39. Add the following line to the script.

import parametric

The Python script will need the uncertainty quantification configuration we just entered. SNAP creates a

small Python module called ‘parametric’ that contains this configuration. The first line imports this

module.

40. Add the following lines to the script.

from snap import streams

from snap.codes.trace import *

from pypost.codes.trace import *

from pypost.codes.aptplot import *

from snap import streams

We’re going to use SNAP streams, TRACE models and jobs, and PyPost, so the script will need to import

those modules.

41. Add the following line to the script.

stream = streams.get_stream()

To update properties or add new jobs we’ll need to get a reference to the currently running stream. This

reference is typically cached to make the script more readable.

42. Add the following line to the script.

w4loop = open_model(stream.get_bundled_file("UQ_W4Loop.med"))

The TRACE model and restart case we’re working with will have to be opened to apply the generated

variates, which we’ll do next.

43. Add the following lines to the script.

for row in parametric.get_table():

 row.apply_values(w4loop)

This two lines of code loops through every row in the Uncertainty Quantification “Table” that we

configured using the user interface earlier. Each “row” contains a set of variates that can be applied to

one or more models. In this case, we’re applying them to the base model.

Python Directed Job Stream Tutorial 29

44. Add the following lines to the script.

 base = TraceActor(row.new_task_name("Base_Job"), tracin=w4loop)

 restart = TraceActor(row.new_task_name("Restart_Job"),

 tracin=w4loop.case('Null-Transient'),

 trcrst=base.trctpr)

 stream.add([base, restart])

stream.wait()

This portion of the script creates the base and restart TRACE jobs and adds them to the stream in much

the same fashion as previous exercises. It then waits for the entire set of jobs to finish before continuing.

45. Add the following line to the script.

for row in parametric.get_table():

The script loops through the table rows again, this time to populate the figure of merit values.

46. Add the following lines to the script.

 file = (row.search().label_eq("trcxtv")

 .task_name_contains("Restart_Job")

 .result())

These lines use the Uncertainty Table's search feature to find the plot output of the restart job

corresponding to this row. The search is initialized to find files created by models that this row has been

applied to. Adding the file label and task name criteria narrows the results to the plot output we’re

looking for.

47. Add the following lines to the script.

 if file is None or not file.location.exists():

 get_logger().error("Row {} did not produce a plot file."

 .format(row.row_index))

 continue

Better safe than sorry: This section adds a readable error message if TRACE fails to execute for some

reason.

Python Directed Job Stream Tutorial 30

48. Add the following lines to the script.

 file_index = TRACE.openPlotFile(file.location)

 tsurfi_01 = TRACE.getData(file_index, 'tsurfi-140A01')

 tsurfi_02 = TRACE.getData(file_index, 'tsurfi-140A02')

 tsurfi_03 = TRACE.getData(file_index, 'tsurfi-140A03')

 end_time = tsurfi_01.maxXval()

 max_temperature = max(tsurfi_01.yvalAt(end_time),

 tsurfi_02.yvalAt(end_time),

 tsurfi_03.yvalAt(end_time))

 row.set_fom_value("FuelTemp", max_temperature)

 TRACE.closeAll()

This section uses PyPost to parse the plot file generated by each TRACE execution and extract the

necessary values. For this exercise, the maximum center-line temperature of heat structure 140 at the

end of the calculation will be stored as the figure of merit “FuelTemp” using the row’s set_fom_value

method.

49. Add the following line to the script.

parametric.get_table().generate_report()

This line creates an uncertainty quantification report job and submits it to be executed by the stream

then waits for it to finish before returning.

50. Press OK to save the script.

The job is now ready to submit. The next steps will submit the job to the Calculation Server, and

examine the generated report.

51. Right-click the UQ_Stream node in the Navigator and select the Submit Stream to Local menu

item.

52. Press OK in the confirmation dialog and wait for the stream to complete.

53. Once the stream is complete, expand the UQ_Stream node in the Job Status Navigator.

54. Select the Uncertainty_Report job in the table.

55. Press the View Files () button on the toolbar and select:

Documents → report – uq_report.docx

This completes Exercise 6.

	1. Introduction
	1.1. Definitions
	1.2. Finding More Information
	1.3. Setup

	2. Exercise 1 – Simple Python Directed Job Stream
	3. Exercise 2 – SNAP Variables and Optimization
	4. Exercise 3 – Keywords and File Search
	5. Exercise 4 – Bundled Files
	6. Exercise 5 – TRACE-PARCS Coupled Job Stream
	7. Exercise 6 – Uncertainty Quantification

