
1

Information Systems Laboratories, Inc.

PWR Steady-State Topics and Exercises

Information Systems Laboratories, Inc.

Presented at

Nuclear Regulatory Commission

TRACE/SNAP User Workshop

Columbia, MD

March 26 – 29, 2018



2

Objectives

The objective of our discussion and exercises is to provide 

insights in obtaining steady-state conditions using the PWR 

power plant model.  At the end of this session, the PWR 

model will be ready to run a cold leg small-break LOCA.
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Topics

• Managing Multiple Simulations in a Single Model

• Achieving Steady-State Target Conditions

• Debugging TRACE Input Errors

• Break Modeling & Validation

• Reflood Configuration and Steady-State Calculation
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One Model – Multiple Simulations

Multiple accident simulations for a nuclear plant, such 
as an LBLOCA and an SBLOCA, may be performed 
using a TRACE model. Accidents may assume different 
initial and boundary conditions (e.g., power level, ECCS 
flow assumptions, etc.)

Maintaining multiple models is inefficient when model 
updates are required, and can lead to inconsistencies.
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One Model – Multiple Simulations

How do you conveniently maintain multiple 
accident configurations within a single 
model?

•Control Systems* 

•Restart Input File*

•SNAP Numerics

* Discussed only briefly
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One Model – Multiple Simulations

Control Systems can be included in a model to manage 
differences between simulations: 

Advantages:

Single Base TRACE Input File

Minimal model reconfiguration 
via restart file (if well organized)

Disadvantages:

Limited Scope - Some 

properties are not controllable

Less Maintainable – Can lead 

to complex control systems. 

SNAP layout/annotation can 

help significantly.
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One Model – Multiple Simulations

Restart files can be used to manage differences between 
simulations: 

Advantages:

Flexibility - Most components can 

be updated via restart files

Simple Reconfiguration – When 

combined appropriately with 

control systems

Model changes are documented

(They are explicit in the restart file)

Disadvantages:

Complexity – Restart files can 

become large and complex if 

components are modified

Less Maintainable – Corrections in 

base model may be unintentionally 

overwritten in restart deck

Fragile – Changes in base deck can 

cause restart to be incompatible

Simulation differences are not 

incorporated in the base model

Restart overwrites initial conditions 

for components in restart file
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One Model – Multiple Simulations

SNAP Numerics is a more recent option that can be used to 
manage accident simulation differences: 

Advantages:

Flexibility – Most model parameters are 

configurable via Numerics (but not all)

Maintainability – Differences  are included 

in the base SNAP model

Robustness – Changes to model do not 

typically impact Numerics

Simplicity – Can simplify implementation 

for some configuration changes

Differences are included in base SNAP 

model

Disadvantages:

One SNAP Model, but multiple 

TRACE input files

There is not a way from within 

SNAP to see where Numerics is 

used in the model. (However, you 

can export an input file with 

Numerics preserved, which shows 

where Numerics variables are 

used in the model.)

The SNAP UI is not very good for 

managing a large number of 

parameters
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Storing Multiple Steady-States

SNAP allows multiple sets of steady-state conditions 
to be stored in the SNAP model. This is useful when 
separate accident simulations begin from different 
steady-state conditions.

The following exercise demonstrates the process of 
saving initial conditions.

Open the ‘Day3/Afternoon/PWR/1_Numerics' folder and double click on 

'PWR1-SS-N.med' to open the example PWR model.
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Saving SS Conditions Exercise

The initial conditions in the model are currently best estimate 
conditions. Save the best estimate initial conditions by doing the 
following:

1. In the model click on 

2. In the properties window click        on 

3. In the ‘Manage Initial Conditions’ dialog click

4. On the item that appears in the initial conditions list, double click on 
‘unnamed’. Replace ‘unnamed’ with ‘Best Estimate’ and click

This makes it possible to restore best estimate conditions even after other 
initial conditions have been imported into the model.

Do not close the PWR1-SS-N.med file
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SNAP Numerics

What is SNAP Numerics? 

• SNAP Variables – Used to configure 

model parameters

• Programming tools used to configure 

these variables:

➢Python (Built in)

➢Matlab

➢Mathcad
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Python

• Python is a popular scripting language

• You don’t need to know much Python to be effective in 
SNAP!

• There are many simple tutorials available on the web.

Brief Python Basics

• # is used before comments

• Indentation is used to delineate 

code blocks (such as for ‘if’)
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Numerics Exercise

The PWR model contains fictional best estimate 
conditions. Configure the model via Numerics to 
use power that is 102% of best estimate conditions 
(an Appendix K assumption).

Refer to the Day3 Afternoon Exercise: PWR Model – Numerics Exercise located at 

Day3\Afternoon\PWR\1_Numerics\NumericsExercise.pdf

The PWR model used to demonstrate saving initial conditions (PWR1-SS-N.med) will 

be used for the Numerics exercise.
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Retrieving SS Conditions Exercise

In the Numerics exercise just completed, a steady state calculation 
was made with the power and decay heat multiplier set to Appendix 
K values. The initial conditions generated in that run will be saved 
by doing the following steps:

1. In the model right click on the                                                tab 
and click on “Manage Initial Conditions”

2. In the popup window click on the                 button.

3. In the “Initial Conditions” dialog click on the button that will 
retrieve data from “A Submitted Run”.

4. Select      the trcxtv file of the PWR1-SS-Numerics calculation

Instructions continue on next page
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Retrieving SS Conditions Exercise

Retrieve SS Conditions Exercise (continued):

5. Click on the Preserve Numerics box 

6. Click on the Load Timesteps box 

7. Highlight the last row of timestep data that appears and click  

8. In the ‘Manage Initial Conditions’ dialog click on 

9. On the item that appears in the initial conditions list, double 
click on ‘unnamed’. Replace ‘unnamed’ with ‘Appendix K’ and 
click

This makes it possible to restore Appendix K conditions even after 
other initial conditions have been imported into the model.
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Restoring SS Conditions Exercise

Initial conditions from “Best Estimate” can be restored by doing the 
following steps:

1. In the model right click on the                                                tab 
and click on “Manage Initial Conditions”

2. In the popup window click on the index named “Best Estimate” 

3. Click on                 , then click OK

The initial conditions from “Best Estimate” are now loaded and can 
be used for simulations.
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Topics

• Managing Multiple Simulations in a Single Model

• Achieving Steady-State Target Conditions

• Debugging TRACE Input Errors

• Break Modeling & Validation

• Reflood Configuration and Steady-State Calculation
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Steady-State Challenge

In achieving steady-state conditions, there are 
multiple target conditions that need to be achieved 
simultaneously.
(e.g., Loop Flows, Primary Side Pressure, Tave, etc.)

Parameters changed to achieve one target condition 
often affect other target conditions.
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Steady-State Challenge

How do you efficiently achieve all steady-

state target conditions?

Manually adjusting parameters to achieve steady-state 

is a time consuming process that has to be repeated 

each time targets change. Typically this requires several 

iterations.

Control Systems can be used to adjust control 

parameters automatically in order to achieve steady-

state target values. Targets can typically be achieved in 

a single steady-state run.
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Steady-State Challenge

How do you efficiently achieve all steady-

state target conditions?

• Manual Adjustment
(Some parameters are not controllable) 

• Constrained Steady-State (CSS) 
(Built in Control Systems)

• User Defined Control Systems
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Manual Adjustment

Some parameters are not adjustable via control systems 

and must be adjusted manually.

It is recommended that manual adjustments be made 

after control systems have been implemented for other 

steady-state targets.

Note that K losses, which where not controllable in early 

versions of TRACE, are now controllable.
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Constrained Steady-State (CSS)

TRACE has built-in steady-state control systems that can 

be enabled for a few common cases. These include:

• CSS Type 1 - Controls Pump speed to achieve a target mass flow or 

velocity

• CSS Type 2 - Controls Valve area to achieve a mass flow or upstream 

pressure

Simple to add – 1.) Specify Component and 2.) Choose Target 

Value.

Achieves steady-state fairly rapidly

Limited to a few cases

Not usable during transient



23

CSS Exercise

Add a constrained steady state controller to PUMP 315

• Set the target mass flow to 4259 kg/s

• Set the max pump speed to 200 rad/s

(See CSS_Exercise1.pdf)

Refer to the Day3 Aternoon Exercise: Constrained Steady-State Exercise located at 

Day3\Afternoon\PWR\2_Achieving_Steady-State\CSS_Exercise1.pdf
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User Defined Control Systems

A typical control system is comprised of a Signal, an Error Signal, a 
Control System, and a Control Parameter.  The control system adjusts 
the control parameter to minimize the error. For simple control 
systems, there should be a monotonic steady state relationship 
between the control parameter and the error signal over the range of 
control. 

Error
Signal

(Δ from Target Temp.)

Control
System
(Hand)

Signal

(Temperature)

Control
Parameter

(Faucet Handles)
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User Defined Control Systems

A monotonic steady state relationship between control and output 
requires that (1) for a fixed control parameter value the output to go to 
steady state and (2) as the control parameter is increased the steady 
state output value always increase or always decreases.

Monotonic Not Monotonic
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Control System Stability

The control system acts on a feedback loop. When the control 
parameter changes, there is a delay time before the error 
signal measures the response (e.g., the time for the water to 
go from the valve to the faucet exit).

Error
Signal

(Δ from Target Temp.)

Control
System
(Hand)

Signal

(Temperature)

Control
Parameter

(Faucet Handles)

Feedback Loop
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Control System Stability

• If the control parameter is adjusted too quickly (overcontrolled), it can 
overshoot the target and take several oscillations to settle. 

• If it is overcontrolled too much, the error signal can amplify and 
become unstable (think feedback through a microphone). 

• If the parameter is adjusted too slowly (undercontrolled), the time to 
reach steady state can be excessive. No oscillations are usually visible.

Overcontrolled Excessive Overcontrol

(Unstable)

Undercontrolled
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Control System Theory

A common controller type is the PID controller. The 

control signal value is adjusted:

• (P)roportional to the Error, and proportional to the

• (I)ntegral of the Error, and the

• (D)ifferential of the Error

 
dt

Errd
GdtErrGErrGXo DIP

)(
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Control System Theory

One of the challenges is choosing the P, I, & D Gains to 

optimize the time to reach steady-state. If the Differential gain 

GD is set to zero, this is called a PI controller. If Integral gain 

GI is also set to zero, this is called a P controller.

To

T

Err=To-T

Xo

 
dt

Errd
GdtErrGErrGXo DIP

)(
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Control System Theory

The control system needs to supply a Control Signal value (e.g., Faucet Handle 
Position), which defines the form of the control logic. However, we are 
interested in the responsiveness  and effectiveness of the controller, so the 
derivative of the control system equation is more convenient to examine.

2

2 )()()(

)()(

)()(

dt

Errd
GErrG

dt

Errd
G

dt

Xod

ErrG
dt

Errd
G

dt

Xod

dt

Errd
G

dt

Xod

DIP

IP

P





P Controller:

PI Controller:

PID Controller:

Note that the Proportional (P) controller reaches equilibrium 
(i.e. 𝑑(𝑋𝑜)/dt = 0) when the Change in Error , not the Error, goes to 
zero. Proportional controllers often settle at a constant error. Thus 
proportional controllers are often a poor choice. The integral term is 
necessary to make the error go to zer0.
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Gain Guidelines

The GP, GI, and GD gains should all be positive or negative. The sign 

of the gains depends on whether there is a positive or a negative 

slope correlation between the control variable Xo and error signal 

Err.

• A positive slope correlation indicates negative gains are needed, and a 

negative slope correlation indicates positive gains are needed.

• If the sign of the gains is chosen incorrectly, then the error will typically 

diverge from zero without exhibiting persistent oscillations about the target 

value.

• If the error signal shows persistent oscillations about the target value, this 

suggests that the sign on the gains is correct, but the gain is too large 

causing overshoot (i.e. overcorrection).



32

Initial Estimates on Gp Gain

PI controllers work best for systems that have a nearly 

linear relationship between the control and output 

parameter (i.e. the slope does not vary by large 

magnitudes).

Since the control system can become unstable, or take a 

long time to reach the target value, if gains are not 

optimized, it is useful to have some sense of how to set and 

optimize gains to avoid instability and get reasonable 

performance.

In the slides that follow we will discuss how to estimate the 

stability limit. Later in todays exercises we will talk about the 

Zeigler-Nichols method for getting reasonable control 

performance.
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Initial Estimates on Gp Gain

To simplify the problem, lets assume a simple linear 

relationship between the control parameter 𝑋𝑜 and the 

output parameter 𝑇 expressed in terms of 𝐸𝑟𝑟 = 𝑇 − 𝑇𝑜
(where 𝑇𝑜 is the target steady state value).

𝑋𝑜 = 𝐴 ⋅ 𝐸𝑟𝑟
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Initial Estimates on Gains

Now consider the proportional controller equation 𝑋𝑜 = 𝐺𝑝𝐸𝑟𝑟. 

Let’s add indexes to indicate time steps: 

𝑋𝑜,𝑖+1 = 𝐺𝑝𝐸𝑟𝑟𝑖

This states that the 𝐸𝑟𝑟 at time step 𝑖 determines the control 

value at time step 𝑖 + 1. Now assume that the control system acts 

almost instantly such that the steady state value 𝑋𝑜 = 𝐴 ⋅ 𝐸𝑟𝑟 is 

reached between each time step. Then can make the 

substitution:

𝐴 ⋅ 𝐸𝑟𝑟𝑖+1 = 𝐺𝑝𝐸𝑟𝑟𝑖 𝑜𝑟 𝐸𝑟𝑟𝑖+1 =
𝐺𝑝
𝐴
𝐸𝑟𝑟𝑖

Note that if |𝐺𝑝/𝐴| > 1 then the error grows each time step and 

the control system is unstable (i.e., 𝐸𝑟𝑟𝑖+1 > |𝐸𝑟𝑟𝑖|).
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Initial Estimates on Gains

Thus for a very fast controller with the approximate 

relationship 𝑋𝑜 = 𝐴 ⋅ 𝐸𝑟𝑟, the stability limit for 𝐺𝑝 is near:

𝐺𝑝

𝐴
< 1 𝑜𝑟 𝐺𝑝 < 𝐴

For controllers that take many time steps to reach equilibrium, 

the controller can remain stable for values of 𝐺𝑝 that are 

(possibly much) larger than |𝐴|. However, the slope 

relationship between 𝑋𝑜 and 𝐸𝑟𝑟 is a good starting point for 

determining the stability limit for 𝐺𝑝 .

Note that according to our guideline for selecting 𝐺𝑝, the sign 

of 𝐺𝑝 should be opposite of the sign of 𝐴.
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Initial Estimates on Gains

For a nonlinear relationship between the control variable 

and the output, the smallest slope is the most limiting 

from a stability perspective. If the slope changes 

significantly, the controller will perform poorly over part of 

the control range.

A function control block can be used to linearize the 

relationship between control signal and the error and get 

better performance over a wider range of control values.
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Initial Estimates on Gains

We don’t cover the method for calculating the nonlinear 

relationship between the control and output variable in 

the exercises, but the basic technique is to slowly vary 

the control variable upward, then downward. If the 

control is adjusted slowly enough, plotting the control 

variable value vs. the output value will trace out the 

relationship.
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Initial Estimates on Gains

To estimate the relationship between 𝑋𝑜 and 𝐸𝑟𝑟, a control 

parameter step function is useful. To apply a step function:

1. Set the control parameter 𝑋𝑜 to a constant value and run 

the simulation till the output 𝐸𝑟𝑟 is at steady state. The SS 

points will be called 𝑋𝑜,1 and 𝐸𝑟𝑟1.

2. Use a function block to implement a step change in the 

control parameter after steady state is reached. Then let 

the system run till the new steady state is reached. The SS 

points will be called 𝑋𝑜,2 and 𝐸𝑟𝑟2

3. Approximate 𝐴 in 𝑋𝑜 = 𝐴 ⋅ 𝐸𝑟𝑟 as:

𝐴 =
𝑋𝑜,2 − 𝑋𝑜,1
𝐸𝑟𝑟2 − 𝐸𝑟𝑟1

= −𝐺𝑝0
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Initial Estimates on Gains

Note that initial estimate of the stability limit for the gain is not 

necessarily a good estimate. The actual stability limit may be a 

few orders of magnitude larger. However, it does provide a 

lower bound to start with.

𝐴 =
𝑋𝑜,2 − 𝑋𝑜,1
𝐸𝑟𝑟2 − 𝐸𝑟𝑟1

= −𝐺𝑝

This is an initial estimate of 𝐺𝑝 that can be used in Zeigler-

Nichols tuning method discussed later.

Refer to the Day3 Afternoon Exercise: Initial Gain Stability Estimate Exercise

located at 

Day3\Afternoon\PWR\2_Achieving_Steady-State\GainEstimate_Exercise2.pdf
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PID Characterization

Four major parameters are used to characterize 

a PID controller:

1. Rise Time – The initial time it takes 

for the Error to be reduced by 90%.

2. Overshoot –

|Error Peak (n+1)|/|Error Peak (n)| 

For oscillatory error

2. Settling Time – Time it takes for Error to stay within 99% of equilibrium.

3. Steady-State Error Offset
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PID Tuning

Assuming the sign of the gains is correct, the typical effect of increasing 
|GP|, |GI|, and |GD| is summarized in the Table below:

Rise Time Overshoot Settling Time S-S Error

|GP| Reduce Increase* - Increase

|GI| Reduce Increase* Reduce /(Inc.*) Remove

|GD| - Reduce* Reduce -

General Tips:

*When overcorrection occurs  signaled by oscillations

• Use non-zero GI to achieve the correct target.

• Increase GP or GI if convergence is slow and there is no overshoot

• Decrease GP or GI if oscillations are noticeable & damping is slow

• GD is often not included, but if added it may improve the settling time
(Warning - Differential term will amplify noise in the Error signal)
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PID Configuration

The Ziegler-Nichols method is a simple structured tuning 

technique for PID controllers. The Steps are:

1. Set the Integral and Differential gains (GI and GD) to zero

2. Tune the Proportional gain (GP) till the Error oscillates with constant 

amplitude (Borderline unstable) – This is the stability limit GPMax

3. From the Error response take the oscillation Period TP (Peak to Peak time)

4. Depending on the type of controller desired, modify the gains based on 

the  following Table:

GP GI GD

P Controller 0.5 GPMax

PI Controller 0.45 GPMax 1.2 GPMax/TP

PID Controller 0.6 GPMax 2 GPMax/TP TP GPMax/8
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Reducing Noise

When the input signal has a significant amount of noise it is often 

desirable to filter out the noise. A lag Control Block [26] can be added 

to the PID controller output to filter noise effects. The lag control acts 

like a spring-damper system. CBCON1 (C1) is the lag (or damping) 

constant.

Lag Input

Lag Output
inout

out XGX
dt

dX
C 1

Spring-Damper Terms

Lag Control Equation:

Forcing Term
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Reducing Noise

Increasing the lag constant C1 increases the filtering of the high 
frequency noise, but reduces the responsiveness of the control signal.

Lagged Signal with
Small Lag Constant

(C1=0.1)

• Small Response Delay
• Noticeable Noise

Lag Signal with 

Larger Lag Constant

(C1=0.5)

• Significant Response Delay

• Noise mostly filtered out

Sinusoidal Signal
with Noise
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PID with Lag Tuning

Assuming the sign of the gains is correct, and that a lag control of Gain 1 
and Lag constant CL is added to the PID output, the typical effect of 
increasing |GP|, |GI|, |GD|, and CL is summarized in the Table below:

Rise Time Overshoot Settling Time S-S Error Noise

|GP| Reduce Increase* - Increase -

|GI| Reduce Increase* Reduce or 

Increase*

Remove -

|GD| - Reduce* Reduce - Increase

CL Increase Reduce* Increase or 

Reduce*

- Reduce

*When overcorrection occurs  signaled by oscillations
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TRACE PI and PID Controls

For convenience, TRACE includes PI and PID control blocks. The PI and PID 
controls include a lag block. The PI control is characterized below:

Xin

X

G

T
CL

X

X0









  dtErr

T
ErrGX

dt

dX
C out

out
L

1

Target Value =
X

* The target       can be specified via a control block (ICB2).

Otherwise it is defined via PI control constant 1 (CBCON1)

X0 is the initial value of Xout

PGG 

inXXErr  

I

P

G

G
T Conversion from GP & GI

to TRACE PI constants G & T

X
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Control Systems Exercise

In the PWR model, tune the Tave controller using the 
Ziegler-Nichols  method.

Refer to the Day4 Afternoon Exercise: PID Controller Exercise located in the Day4 

afternoon section of your workbook or PIDExercise2.pdf located in the 

Day3\Afternoon\PWR\2_Achieving_Steady-State folder.
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Topics

• Managing Multiple Simulations in a Single Model

• Achieving Steady-State Target Conditions

• Debugging TRACE Input Errors

• Break Modeling & Validation

• Reflood Configuration and Steady-State Calculation
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Debugging Input Errors

TRACE input is complex, which increases the potential for 

input errors.

The error messages printed by TRACE are not always 

informative. 

How do you identify the location of an input 

error so that it can be fixed?
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Debugging Input Errors

Suggested Steps:

1. Review ALL errors and warnings carefully
(The relevant error is often reported before the ‘fatal error’ message)

2. Look for the string ‘error’ in the *.echo file
(The error file may report the line where an error occurred)

3. Look at where the *.out file stopped
(Sometimes stops at or near the error location – look at what 

component was being processed when *.out file stops)

4. Compare input file against recently working model
(Use of a source control is recommended for evolving models)
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Input Debugging Exercise - Water Faucet Model

A simple faucet model with some errors will be used as a debugging exercise. A PI 
controller is used for the hot water valve such that the temperature should reach 
105 °F (313.7 K). Correct the input errors that cause the model to fail and verify that 
the controller causes the faucet to reach 105 °F. There are 3 errors.
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Input Debugging Exercise

Refer to the Day4 afternoon Exercise: Debugging TRACE Input Errors located in 

the Day4 afternoon section of your workbook or TRACE_Input_Error_Debugging.pdf

located in the Day3\Afternoon\PWR\3_Input_Debugging folder.
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Modeling Breaks via Valves

• Valves are easily configured to open in response to trips.
Break assumptions are explicitly included in the model when the break valve 

opens in response to the SBLOCA trip. This leads to better self-

documentation for the model.

• Valves can be resized via control systems.
Break size logic can be included in the control systems, so a single 

valve may be configured to handle multiple SBLOCA break sizes.

For SBLOCA accidents, a valve components 

connected to a pipe side junction is a 

convenient way to model the. Some of the 

advantages are:
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Valve Caveat

By default, valves include a built in form loss which impacts 
break flow. In the current version of TRACE, valves include 
an option to turn off this internal form loss and instead 
specify an explicit flow area fraction vs. K Loss table:

Valve Internal Loss Parameter
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Modeling Breaks via Valves

Side junction connections are NOT recommended for 

LBLOCA accidents. TRACE solves the side junction 

momentum equations using a pseudo 2-D flow method, 

which has some limitations (see the TRACE Theory 

Manual second on “Pseudo 2-D Flow”)

Instead the break components should be connected to 

the end of the pipe as shown below. This requires a 

restart from the steady state simulation to insert the 

breaks.
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Containment Break Modeling

For the break component, the effect of the length (DXIN) 
and volume (VOLIN) were covered on Day 3 in the 
afternoon. The conclusion was that for a large volume 
pressure sink VOLIN/DXIN should be large (i.e. the Area 
should be large), so that the pressure of the break represents 
a stagnant pressure.
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Containment Break Modeling

Break pressure is of course important since this governs the break flow 
and the timing of choked flow events. Sometimes backflow from 
containment occurs, so break mixture conditions are also important. To 
avoid liquid entering via backflow through the break do the following:

• Set initial gas volume fraction (ALPIN) to 1.0

And do one of the following

• Set temperature table option (ISAT) to ‘[3] Set liquid and gas to Tsat’ to cause 
saturated steam to enter during backflow.

OR

• Set the noncondensible partial pressure (PAIN) close to the initial pressure 
and set the initial mixture temperature (TIN) to containment conditions.
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Break Modeling Exercise

Add a 3 inch cold leg break to the Loop 1 cold leg PWR model using the 
directions provided in the ‘Break Modeling Exercise’ document. 

Refer to the Day3 Afternoon Exercise: Break Modeling Exercise located in the Day3 

afternoon section of your workbook or BreakModelingExercise.pdf located in the 

Day3\Afternoon\PWR\4_Break_Model folder.
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Reflood Configuration

The example PWR model has been set up to perform a 

small break loss-of-coolant-accident.  It is expected that 

during this transient, core uncovery will occur and the fuel 

rods will heat up.  Emergency core cooling systems are 

expected to activate, injecting coolant into the primary 

system.  Core reflood is expected to occur, stop the fuel rod 

heatup process and subsequently quench the fuel rods. 
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Reflood Configuration Exercise

To predict a more accurate representation of the fuel rod 

behavior during the transient, the reflood and fine-mesh 

renodalization options should be activated in the model.  

Check the PWR model for reflood and fine-mesh 

capabilities.  Make the appropriate modifications to activate 

the reflood and fine-mesh capabilities if needed.  

Refer to the Day4 Morning Exercise: Reflood Activation Exercise located in the 

Day4 morning section of your workbook or Reflood_Activation_Exercise.pdf located 

in the Day4\Morning\PWR_Steady-State folder.



63

PWR Steady-State Calculation Exercise

The model is now ready to run a steady-state calculation.  

The small break LOCA transient calculation will restart from 

the end of the steady-state run.  

Run a 1000 s steady-state calculation.

Refer to the Day4 Morning Exercise: PWR Steady-State Calculation Exercise located 

in the Day4 morning section of your workbook or Steady-StateRunExercise.pdf located 

in the Day4\Morning\PWR_Steady-State folder.


