
Symbolic Nuclear Analysis Package (SNAP)
SNAP/TRACE User Workshop
Intermediate SNAP Exercises

March 2018

Copyright © 2018
Applied Programming Technology, Inc.

Bloomsburg, PA 17815

Table of Contents
Introduction..1
Exercise 12. SNAP Variables and Parametrics..2
Exercise 13. Animating a Model..13
Exercise 14. Interactive Controls...18
Exercise 15. AptPlot in Job Streams..21
Exercise 16. Tabular Parametric and Axial Plotting..27
Exercise 17. Uncertainty Quantification with TRACE and DAKOTA.............................40
Exercise 18. Creating a TRACE Model Notebook..46
Exercise 19. Job Stream Sequences...51
Exercise 20. AptPlot Commands...60
Exercise 21. AptPlot Scripting...64

Intermediate Exercises ii

Introduction
This set of exercises focuses on intermediate and advanced SNAP functionality. The following
topics are covered:

• SNAP Variables – tools for defining values used across the model and functions that
modify their values from user-defined code.

• Interactive Controls – tools for changing the state of an active calculation.

• Post-processing – animating stream task results and annotating a model.

• Model Notes – HTML annotations that can be attached to any component or attribute in
the model.

• Working with AptPlot in a Job Stream.

The following assumptions are made by these exercises:

• The SNAP software suite has been installed.

• The user is familiar with SNAP basics: basic use of the Navigator and Property View,
creating and connecting components, opening views, etc..

• A TRACE executable is available on the user's machine.

• AptPlot has been installed.

• Either LibreOffice, OpenOffice.org, or Microsoft Word with the ODF plug-in, have been
installed.

• A PDF viewer has been installed.

Intermediate Exercises 1

Exercise 12. SNAP Variables and Parametrics
This exercise begins with an example of the SNAP variables feature. Variables provide a means
of assigning calculated values to specific model inputs. This provides a great deal of flexibility: a
single variable can be referenced in multiple places, edited in a 2D View, adjusted by functions,
and varied for parametric submit.

The first series of steps will create a variable and a reference to it.

1. Open SNAP_Exercises/StandPipe5.med, included with these exercises and make the
following modifications:

1. Select StandPipeStream in the Navigator and make sure its Platform is set to
“Local” and its Root Folder to “runs” (or the appropriate root folder used in place
of the runs directory).

2. Select each TRACE step in StandPipeStream and make sure their Application is set
to a valid TRACE application.

The property view will display the current Application in red if the property is invalid
for the local configuration.

2. Expand the Numerics category in the Navigator.

Several sub-categories will be displayed, including Reals.

3. Create a new component in the Reals category.

The Select Type dialog will be displayed, as shown below. This dialog is used to select
the unit type associated with the new Real variable. Real variables can only be
referenced from values with a matching unit type.

4. Select the “No Unit (-)” type, then press the OK button.

A new Real variable named r1 is created and selected in the Navigator. Note the
Unknown in the Value property: this variable has no value by default.

5. Set the Value of the new variable to “-1.0E4”.

Intermediate Exercises 2

6. Press the Validation Display () button on the Model Editor's main toolbar.

The SNAP Validation Display includes the contents of the current model in ASCII format
and a toolbar that indicates the current cursor location and a brief description of the
input at that location.

7. Scroll to Control Block -1, “heatflux” as shown above.

Control Block -1 is the first component in the control blocks section.

8. Click on the value of the Constant 1 (“cbcon1”) property as shown above.

Clicking on a supported portion of the input will update the cursor location and enable
the Edit toolbar button. Pressing the Edit button will open the graphical editor
corresponding to the current cursor location. The same property selection and editing
features are available in the ASCII Viewer for each component.

9. Press the Edit button in the Validation Display toolbar.

This will select the component (control block -1) in the Navigator and scroll the main
Property View to the Constant 1 property, as shown above.

10. In the property editor for Constant 1, press the Select Numeric Reference button ().

The Select a Shared Real dialog will be displayed, as shown below.

Intermediate Exercises 3

11. Select the row for r1 and press the OK button.

The value for Constant 1 will change to r1(-1.0E4). This indicates that Constant 1 is
now referencing a real variable for its value. The value of the referenced variable will be
substituted anywhere that the value of Constant 1 is used within the model.

The next several steps leverage the drawn variable functionality, which allows variables to be
displayed and edited in a 2D View.

12. Open and display Default View, if it is not already open.

13. Drag r1 from the Navigator into the View, directly over the Heat Controller area.

The value of r1 will be displayed in the view. This representation is called a Drawn
Variable.

14. Select r1 in the Navigator, and change its Value to “-5.0E4”.

The value of r1 displayed in the View will change to reflect the new variable value.

15. Right-click the r1 drawn variable in the View to display its pop-up menu.

16. In the menu, de-select the Show Units check-box

The - on the right side of the drawn variable will be hidden. Real variables with unit
types other than No Unit (-) will display a more descriptive unit here.

17. Right-click the r1 drawn variable and select the Editable
check-box

The drawn variable will change from a label to a text field. The
next several steps will demonstrate that the value of the variable
can now be changed in the view.

18. Press the Lock button () in the upper-left corner of the view
to lock it.

Look for a lock icon in the left-hand side of the view toolbar. If the icon is red and
appears open (), then views are not locked. If it is green and appears closed (), then
the views are locked.

Locking a 2D View will prevent inadvertent repositioning of components and will activate
any drawn variables in the view. Editable drawn variables can only be modified in a
locked view.

Intermediate Exercises 4

19. Left-click within the field.

The drawn variable field will gain focus, and the r1 variable will be selected in the
Navigator.

20. Type in the value “-1.0E4” and press the Enter key.

The Value attribute displayed in the Property View will also change to reflect the new
variable value.

The next several steps demonstrate python functions that can be used to modify variables with
user-written code.

21. Create another Real variable, again with No Unit (-) for the type.

The new variable is automatically named r2 and selected in the Navigator.

22. Set the Value of the new variable to “0.0”.

23. In the Property View, set the Interactive Variable value to “False”.

The Value property becomes uneditable, and a new property, Initial Value, appears
below. In addition, the lock icon next to r2 in the Navigator disappears. These changes
have several implications.

The Interactive Variable property controls the context in which a variable's value can be
modified. Interactive variables can be modified directly in the Navigator or in an editable
drawn variable. Non-interactive variables can be modified by functions. The lock next an
interactive variable is used to indicate that functions cannot modify its value.

The Initial Value of a non-interactive variable is copied into the Value field before
functions are executed. It serves as a stable starting value, allowing functions to
reproduce their results with each successive evaluation.

24. Create a new component in the Functions category.

25. Select Python Function in the Select Numeric Function Type dialog and press the OK
button.

A new function, f1, is created and selected in the Navigator. The function type is Python,
meaning that the user-defined calculation is written in the Python programming
language.

Note: SNAP supports the 2.5 Python standard via the Jython implementation. For more
information, including tutorials for the Python programming language, see
http://docs.python.org/release/2.5/ and http://www.jython.org/.

Intermediate Exercises 5

http://docs.python.org/release/2.5/
http://www.jython.org/

26. In the Property View, edit the Python Source property by pressing the E button in the
editor.

The External Function window will open as shown below.

The Python External Function window contains a python editing area (left) and a list
input/output variables (right). The Input Variables indicate which variable values are
available and which were retrieved by the function the last time it was
executed(Selected). The Output Variables indicate which variables are available and
which were modified by the function the last time it was executed (Selected).

The next several steps use this dialog to define the python function.

27. In the text area to the left, enter the following logic. Note that case is important:
characters must be capitalized (or not) as shown below.

Retrieves the value of variable r1
x = GetVariable("r1")

The first line is a comment. Anything on a line after the # character is ignored. The
second line uses the custom GetVariable function to retrieve the value of the r1 variable
into a new variable named x. The value of x will be used in the next step.

Intermediate Exercises 6

28. After the lines written above, add the following. While the case rule still applies, relative
spacing must also be preserved.

Init and set y
y = float('nan')
if x < -5.0e4:
 y = -1.0
elif x == -5.0e4:
 y = 0.0
else: # x > -5.0e4
 y = 1.0

The first line after the comment declares and initializes a variable named y so that it can
be used by the rest of the function. The following lines are very simple branching that set
the value of y based on the value of x.

The indents here are very important: Python defines blocks by spaces, instead of using
explicit opening and closing characters (such as the curly-brace characters employed by
C-based languages).

Note: the initial value of the y variable, nan, stands for Not a Number. This is used to
indicate an invalid initial starting value that must be set explicitly, based on the state of x.
Variables initialized to nan can often be useful, as all operations performed on nan also
return nan, and all comparisons (except not-equal) return false. If the value was not
assigned properly after the nan initialization, the value set to r2 would show up as
Unknown.

29. After the lines written above, add the following.
Set variable r2 value to y
SetVariable("r2", y)

Similar to the first lines of code in the function, this custom function sets the value of the
indicated variable to the specified value, in this case the variable y.

30. Press the Apply & Execute button, then the Close button.

The logic defined in the last several steps will be stored and then executed. A dialog will
briefly appear, indicating the evaluation of the function. On some machines, this may
occur too quickly to notice.

Note: If an error console appears while executing the functions, go back to the Python
code and make sure that it was entered exactly as listed above.

31. Select the Functions category.

The properties for this sub-category allow executing all functions, saving the calculated
values, and setting whether functions are executed automatically (such as for each task in
a parametric export) or explicitly (through the above button).

32. Press the Execute Functions button.

Again, a dialog will briefly appear, indicating the evaluation of the function.

33. Select r1 in the Navigator and note its Value of -1.0E4.

34. Select r2 in the Navigator and note its Value of 1.0.

Intermediate Exercises 7

This is the expected value, given the logic entered into the function. As the value of r1
was greater than -5.0e4 at the time of evaluation, the value for r2 was set to 1.0. Later,
when examining parametrics, the other values will be displayed.

The following steps describe the basics of parametric streams. All streams have a type; only the
Basic type has been demonstrated to this point. Other stream types are parametric types: they
describe a type of stream where multiple variations of the base model are exported and run.

35. Right-click the Job Streams category and select New from the pop-up menu.

The Select Stream Type dialog will be displayed.

36. De-select (un-check) the “Create a new view for this Job Stream.” check-box.

An existing 2D View will be used to display the job stream.

37. Select the Numeric Combination item and press the Next button.

38. Select “A Single Step TRACE Stream” from the available options.

39. Press Finish to create the stream.

The new stream is created and selected in the Navigator. Note the different icon between
StandPipeStream and the new stream. This indicates the type of individual streams.

The Parametric Properties attribute is available in the new stream. This property is used
to define all settings related to parametric runs, regardless of the stream type.

40. Enter the following values for the new stream:

Name: ParametricStream
Platform: Local
Root Folder: runs
Relative Location: TRACE/

41. Expand ParametricStream and select the Base_Job step.

42. Name the step “StandPipeParametric”.

Intermediate Exercises 8

43. Delete the AptPlot 2 step.

44. Open and display StandPipeStream View.

45. From ParametricStream in the Navigator, drag both the model node and the TRACE
step into the View.

46. Select ParametricStream model node, TRACE model 1, in the Navigator.

A new property, Parametric, will appear in the Property View.

47. Set the model node's Parametric property to “True”.

Note that the model node for the parametric stream is rendered
differently. This indicates a parametric model node that will export a
set of inputs as part of a stream. The model node is currently red as
the parametric properties have not been defined in the job stream.

With the basics of the stream defined, the exercise will now turn to defining the parametric
properties.

48. Select ParametricStream in the Navigator.

49. Edit the Parametric Properties by pressing the E button in the property editor.

The Select Numeric Variables dialog will appear, as shown below.

50. In the Independent Variables tab, press the New Variable button ().

A Select Variable prompt is displayed.

Intermediate Exercises 9

51. Select r1 at the prompt and press the OK button.

A new row appears in the list for r1 and its corresponding parametric properties are
displayed below. The r1 variable is now part of the basis for the numeric combination.

52. In the parametric properties, set the following values:

Use List: False
Start Value: -9.0e4
End Value: -1.0e4
Increment: 2.0e4

These properties define the range of values that will be substituted into the corresponding
variable (r1 in this case) during parametric submits. The values -1.0e4, -3.0e4, -5.0e4,
-7.0e4, and -9.0e4 will be part of the sequence.

Note A Numeric Combination parametric stream creates a parametric iteration for each
combination of the specified Independent Values. The current stream has five parametric
iterations, one for each value in the sequence indicated above. Given another
Independent Variable whose parametric properties indicated a range of three values, the
number of parametric iterations would increase to 15. With only a single step in the
stream (StandPipeParametric) this will result in 15 parametric tasks.

When Use List is set to True, an explicit list of values can be defined.

53. Select the Dependent Variables tab.

Note: The dependent variable tab does not have a property view. Unlike an independent
variable, a dependent variable is not used to define the parameters of the combination.
Instead, its value will be sampled and added to the list of parametric keywords associated
with each task. Each set of keywords acts as a signature of sorts for an individual
parametric task. The parametric keywords created by this stream will be shown in a later
step.

54. Note the Value Filters tab. This tab allows filtering the generated task based on the values
of the independent variables.

55. Add r2 to the list of dependent variables. The steps are the same as those used to specify
an independent variable.

56. Press the OK button.

The parametric properties are now set for the stream.

57. Select the TRACE step StandPipeParametric in the Navigator or in the View.

A new property, Parametric Tasks, will appear in the Property View. The value should
indicate “Including 5 of 5”.

58. Edit the Parametric Tasks property by pressing the E button in the editor.

This will display the Define Parametric Tasks dialog, as shown below. This dialog
illustrates the parametric tasks associated with a particular step, and can be used to
disable specific tasks for both the step and any downstream steps.

Intermediate Exercises 10

This dialog illustrates the parametric keywords described earlier. The values of r1 and r2
in each row indicate the keyword signature for that task. Take specific note of the values
for r2. Each reflects the state of r2 after evaluating functions for the current parametric
value of r1 in that task.

59. Press the OK button to close the dialog.

60. From the Navigator, drag ParametricStream into the StandPipeStream View, under the
StandPipeParametric model node.

A button titled ParametricStream is added to the View. This button can be used to submit
the stream. Like other interactive controls, it can only be used when the View is locked.

61. Lock the View and press the ParametricStream button.

62. Press OK to confirm the job stream submission.

After a moment, Job Status will appear and highlight the stream. The ParametricStream
folder will contain five TRACE tasks: StandPipeParametric_T1 -
StandPipeParametric_T5.

63. Wait for the tasks to complete.

64. Select StandPipeParametric_T1 in the table, right-click the row, then select
View Files → Text Files → tracin – StandPipeParametric_T1.inp.

Intermediate Exercises 11

The Output Viewer will be displayed, showing the contents of the input file. Note the top
of the input file includes a meta data block that shows the context for the parametric job
stream.

65. Navigate to the Control Blocks section and in the first block, heatflux, take note of the
cbcon1 value of -9.0E4.

66. Select StandPipeParametric_T5 in the table, right-click the row, then select
View Files → Text Files → tracin – StandPipeParametric_T5.inp.

67. Once again, navigate to heatflux in the input and take note of the cbcon1 value of
-1.0E4.

Note: The cbcon1 value represents Constant 1, the value of the referenced variable r1.
This replacement between tracin inputs demonstrates the changes made to the model for
each parametric iteration.

68. Close Job Status.

69. Select File → Close All from the main menu.

70. Press the Discard All button.

Intermediate Exercises 12

*
*i: Numeric Combination of 1 variables.
*i: Independent Var Type Value Range
*i: r1 No Unit(-) -9.0E4 [-9.0E4 / -1.0E4 / 2.0E4] [start / end / increment]
*i:
*i: Dependent Var Type Value
*i: r2 No Unit(-) -1.0
*

Exercise 13. Animating a Model
This exercise introduces SNAP's post-processing capabilities. The following steps describe how
to create an animation display using a standpipe model similar to those created in previous
exercises.

 1. Open SNAP_Exercises/StandPipe6.med, included with these exercises, and make the
following modifications:

(a) Select StandPipeStream in the Navigator and make sure its Platform is set to
“Local” and its Root Folder to “runs” (or the appropriate root folder used in place
of the runs directory).

(b) Select each TRACE step in StandPipeStream and make sure their Application is set
to a valid TRACE application.

The property view will display the current Application in red if the property is invalid
for the local configuration.

(c) Select the StandPipeRestart TRACE step and set the Start Paused option to Off.

 2. If Default View is not open or displayed, open and select it now.

 3. Unlock the View, if needed.

 4. Select all of the components in the view: right-click on any empty space in the view and
choose Select → All from the pop-up menu.

If any components are selected before opening the pop-up menu, clear the selection by
left-clicking on empty space in the view. Otherwise, the right-click pop-up will display
entries for the selected item. Alternatively, the keyboard shortcut Ctrl-A when the 2D
View has input focus will select all components (Command-A on a Mac).

 5. With all components in the view selected, right-click the selection and select Copy from
the pop-up menu.

 6. Create a new Animation model by pressing the New Model button and selecting
“Animation Model” in the Select Model Type dialog.

Once the new model is created and displayed in the Navigator, a blank Default View will
be displayed.

 7. Right-click anywhere in the Default View and select Paste from the pop-up menu.

This will paste the TRACE model drawings into the animation to create the initial
animation view. The view should appear similar to the following image.

The paste created a number of display elements in the view that are automatically
connected to the appropriate data channels. Any number of additional items can be
added to the view, such as data value readouts, interactive controls, strip charts, etc..
Additional animation elements will be added later in the exercise.

Intermediate Exercises 13

 8. In the Navigator, switch back to StandPipe6.med.

 9. Submit the StandPipeStream job stream and wait for the StandPipeRestart to
complete.

 10.Select the new unsaved Animation model in the Navigator.

In order to animate the view, connections must be established to the calculation submitted in the
previous exercise. This will provide a working set of data channels and interactive variables for
the calculation and simplify development of the interactive view.

 11.In the Navigator, locate and expand the Data Sources node of the animation model.

 12.Select the data source labeled “Master (NewSource)”.

 13.Press the E to the right of the Source Run URL property for this data source.

A Select Data Source window will appear, used to select the calculation that the
animation model should connect to. This dialog is extremely similar to Job Status,
providing a consistent interface for selecting jobs and viewing their properties.

 14.Expand Local, then runs, then TRACE, then select the StandPipeStream folder.

A list of calculations is displayed on the right.

Intermediate Exercises 14

 15.Select the StandPipeRestart job in the table and press the OK button.

The master data source is now associated with the completed job.

 16.Press the Connect to Data Sources button () located on the main toolbar to activate
the connection.

The animation model will now connect to the data source, providing it access to the
calculation results. Notice that a number of buttons next to the Connect button are now
available. These playback controls will be explained shortly.

With the animation model connected, a number of new features are available. The animation can
“play back” the results of the run, modifying the display-based data channel values at a given
point in time in the calculation. Before animating the results, the next several steps add
additional display elements to the view.

 17.Select Interactive → Playback Controls with the Insertion Tool.

 18.Click on the view to place the interactive controls.

Note: The controls can be easily repositioned using the select tool after the initial
placement.

 19.Expand the Color Maps category in the Navigator.

SNAP uses Color Maps to translate component data and thermal-hydraulic conditions to
color.

 20.Select the Fluid Condition Color Map and examine its properties.

This component provides a mapping of thermal hydraulic condition over the sub-cooled,
saturated, and super-heated regions. The colors at the ends of each region are supplied

Intermediate Exercises 15

along with a pair of offsets to map temperatures below the saturation
temperature (sub-cooled) and above the saturation temperature
(super-heated).

 21.In the Navigator, right-click the Fluid Condition Color Map and
select Add to View → Default View from the pop-up menu.

This will add the range to the view, which will appear similar to the
image on the right. The range can be re-sized and repositioned as
needed.

 22.Using the Insertion Tool, add a Data Value (located under the
Indicators menu) to the display and set its properties as follows:

Channel Name: time
Numerical Format: %.2f

Note: Data values use the format string standard from the C programming language for
all numerical formats.

 23.Using the insertion tool, add a Strip Plot (located under the Indicators menu) to the
display and set its properties as follows:

Main Plot Title: Temperature
Y Axis Number Format: %.3e

 24.Edit the Plot Data property by pressing the E button in its property editor.

The Edit Plot Data dialog will be displayed, as shown below. This dialog is used to
define the lines that appear on the strip plot. Each row in the table represents a line on
the plot.

 25.Using the table cell editors, set the following values in the table row:

Data Source: Master (StandPipeRestart)
Data Channel: tln-1A01
Label: Pipe 1
Line Color: 255,0,0 in the RGB tab.

 26.Press the Add button to add another line to the plot. Set its values as follows:

Intermediate Exercises 16

Data Source: Master (StandPipeRestart)
Data Channel: tln-2A20
Label: Pipe 2
Line Color: 90,90,255 in the RGB tab.

 27.Press the OK button.

 28.Press the Play button in the playback controls on the Main toolbar.

When the animation begins you will notice elements along the pipe changing color to
indicate the current fluid condition, a read-out of current time in the data value, and the
temperature of the indicated cells is plotted in the strip plot.

 29.Lock the animation using the Lock button.

Locking an animation will activate any interactive controls contained in the view.

 30.Press the Rewind button in the Playback Controls inside the view.

 31.Press the Clock button in the Playback Controls inside the view.

 32.Select the Replay Proportional to Real Time check-box and set the value to 1.0.

 33.Press the OK button.

 34.Press the Play button in the Playback Controls inside the view.

Notice that the replay is now slowed down to display 1 second advancing for each second
of real time. This can be very useful when replaying fast-running calculations.

 35.Press the Clock button in the Playback Controls inside the view.

 36.Un-check the Replay Proportional to Real Time check-box.

Note: This property is saved as a user preference and must be deactivated for future
exercises.

 37.Press the OK button.

Optional Exercise: Add an Axial Plot bean to the view, which displays the heat structure's
inside and outside temperature as two different data sets along the length of the heat structure.

Intermediate Exercises 17

Exercise 14. Interactive Controls
SNAP animation models can interface directly with interactive runs to manipulate the
calculation during execution. Display beans can send commands to the job by setting interactive
variables to preset or user-specified values.

The following steps introduce interactive controls in an animation model.

1. Open the sample file StandPipe_Anim_interactive.med, included with this exercise.

The version of StandPipe_Anim.med used here is modified to include additional
interactive controls and an axial void profile.

2. Ensure that the view is locked.

The interactive controls demonstrated in this exercise only work in a locked view.

3. Open SNAP_Exercises/StandPipe6.med, included with these exercises, and make the
following modifications:

(a) Select StandPipeStream in the Navigator and make sure its Platform is set to
“Local” and its Root Folder to “runs” (or the appropriate root folder used in place
of the runs directory).

(b) Select each TRACE step in StandPipeStream and make sure their Application is set
to a valid TRACE application.

The property view will display the current Application in red if the property is invalid
for the local configuration.

4. Set the Animation Model to StandPipe_Anim_interactive.med, included with this
exercise.

5. Under the Cases category, select Restart Case.

6. Edit the Restart Model property by pressing the E button in the editor.

The virtual model will open so the restart model can be edited.

7. Select the Model Options node in the Navigator.

8. Edit the Timestep Data property by pressing the E button in the editor.

9. Change the End Time value to “1.0E6”, then press the OK button.

This sets an extremely long calculation time, so that the interactive commands can be
demonstrated without the model running to completion.

10. In the Restart Case panel, press the Save Case button ().

11. In the StandPipeStream View, or in the Navigator, select the StandPipeRestart step.

This exercise will be animating the results of this step.

12. Submit the stream: right-click StandPipeStream in the Navigator and select Submit
Stream to Local from the pop-up menu.

Intermediate Exercises 18

13. Press OK to confirm the submission.

14. Wait for the StandPipeRestart case to initialize and to Pause.

15. In the Model Editor, select the File → Open menu item.

16. Select the StandPipe_Anim_interactive.med model in the Navigator.

17. Select Data Sources → Master in the Navigator.

18. Set the Source Run URL to select the StandPipeRestart case that is currently paused and
press the OK button.

19. Press the Connect button, then the Play button in the Main Toolbar.

20. Resume the calculation by selecting Yes at the prompt.

Take note of the text fields in the Valve Controller, Heat Controller, and Flow Controller
panels. These fields are Interactive Variable beans. Typing a number into the field and
pressing Enter sets the value of the interactive variable referenced by the bean.

21. Enter “-1.0E5” in the Heat Controller interactive variable and
observe the results.

The void profile will shift in response to the change in power.

22. Repeat the last step with a value of “-1.0E4”.

23. Enter “1.0” into the Valve Controller interactive variable.

The valve on the left of the diagram will change from red to green
to indicate that it opened.

24. Repeat the last step with a value of “0.0”.

The valve changes back to red, illustrating a close.

25. Enter “5.0” into the Flow Controller interactive variable and
observe the results.

The control block to the right of the field will slowly increase to the new flow value.

26. Repeat the last step with a value of “1.0”.

27. Halt the job with the Stop button ().

Take note of the buttons to the left of the Fluid Condition color map. These are
Command Button beans. When pressed, a command button issues one or more preset
interactive commands.

28. Switch back to the StandPipe6.med model.

Intermediate Exercises 19

29. Resubmit StandPipeStream and wait for the Resume
Calculation prompt.

30. Resume the calculation and wait for the Void Profile to
stabilize.

31. Press the Power: 5E4 button and observe the results.

Pressing this button has the same effect as entering
“5.0E4” in the Power Controller field.

32. In sequence, press the Power: 1E4, Open Valve, Close
Valve, Velocity: 1.0, and Velocity: 5.0 buttons,
observing the results of each.

Each of these buttons matches the commands entered
above and should create equivalent results.

33. Pause the job with the Pause button ().

The next steps will modify one of the existing interactive control buttons to change the command
being sent to TRACE.

34. Unlock the view and select the Power: 1E4 interactive control button in the view.

35. Open the Commands property editing dialog.

Note: This dialog controls the interactive variable values that will be sent to TRACE
when the button is pressed. Notice that the current value is set to -10,000 and the
Command field is set to cb 1:[Heat Flux]. This indicates that the interactive control block
1 will be set to -1.0E4.

36. Change the Value field to -20000.

37. Press the New button.

38. Select the Command field for the new row.

39. Expand the provided drop-down list, and select cb 2: [Valve Area].

40. Set the Value to 1.0 and press the OK button

41. Set the Label to “2E4 & Open”.

42. Lock the view.

43. Press the Close Valve button, then the Power: 5E4 button.

44. Resume the calculation.

45. Press the 2E4 & Open button.

Notice that the Valve indicator turns to green, the valvepos value is set to 1.0 and the
heatflux value is set to -2.0E4.

46. Halt the calculation, close both models, and exit the Model Editor.

Intermediate Exercises 20

Exercise 15. AptPlot in Job Streams
In addition to the SNAP integration explored earlier, AptPlot can be used in job streams as an
application to create complex plots.

The following steps create the AptPlot step that forms the basis of this exercise.

1. Open SNAP_Exercises/StandPipe7.med, included with these exercises, and make the
following modifications:

1. Select StandPipeStream in the Navigator and make sure its Platform is set to
“Local” and its Root Folder to “runs” (or the appropriate root folder used in place
of the runs directory).

2. Select each TRACE step in StandPipeStream and make sure their Application is set
to a valid TRACE application.

The property view will display the current Application in red if the property is invalid
for the local configuration.

2. Open the StandPipeStream View if it is not already open.

3. Expand the Cases category in the Navigator and select the available Restart Case.

4. Edit the Restart Model property by pressing the E button in the editor.

The virtual model will open so the restart model can be edited.

5. Select the Model Options node in the Navigator.

6. Edit the Timestep Data property by pressing the E button in the editor.

7. Change the End Time value to “1000.0”, then press the OK button.

This shortens the calculation to a more manageable run-time.

8. In the Restart Case panel, press the Save Case button ().

9. Expand StandPipeStream.

10. Create a new Stream Step.

The Select Applications dialog will be displayed as shown below.

Intermediate Exercises 21

11. Select the AptPlot application and press the OK button.

A new AptPlot step will be created and selected in the Navigator.

12. Set the Name of the AptPlot step to SamplePlot.

13. Add the AptPlot step to the view by dragging it from the Navigator and releasing it to the
right of the StandPipeRestart step.

Note: The step has only one input: an optional input labeled param. Plot file inputs are
not enabled by default. As AptPlot can open any number of files from a wide range of file
types, an AptPlot step must define its inputs explicitly.

The next several steps add a parameter file to the stream and attach it to the AptPlot step. This
parameter file will be used by default for all plots that do not explicitly define their own
parameter file.

14. In the Parameter File editor, make sure the check-box is selected, then press the S
button.

A pop-up menu will appear, asking for the location of the parameter file. If compatible
External Files in the stream were present, these would also be listed in the menu.

15. Press the Select Local File item in the pop-up menu.

A file selector will appear.

16. Navigate to and select the “SNAP_Exercises/twographs.par” file included with this
exercise.

17. Press the Open button in the file browser.

Intermediate Exercises 22

A new External File has been created in the stream, representing the parameter file. In
addition, this new file definition has been connected to the optional param input on the
SamplePlot step.

18. Expand the Files category under the StandPipeStream.

19. Drag External File 1 from the Navigator into the view, just above the StandPipeRestart
step.

The next several steps define the inputs to the SamplePlot step.

20. Select the SamplePlot node in the Navigator.

21. Press the E button in the Plot Inputs editor.

The Edit Plot Inputs dialog is displayed, as shown below. This dialog is used to define
the files that the AptPlot step will use as sources of data.

22. Press the New Input button ().

A new input is added to the list and selected, displaying its properties to the right.

23. Set the properties of the new input as follows:

Name: xtv_in
Type: TRACE

Notice that a new input has appeared on the AptPlot step in the view, labeled xtv_in.
Each input defined in the Plot Inputs editor defines another input for the step itself.

24. Press the Close button.

25. In the view, connect the trcxtv output of the StandPipeRestart step to the xtv_in input
of the AptPlot step.

The following steps will define the contents of the plot generated by the step.

26. In the SamplePlot properties, press the E button in the Plots editor.

The Edit Plot Properties dialog is displayed, as shown below. This dialog is the heart of
an AptPlot step definition: all plots produced by an AptPlot step are defined here. The

Intermediate Exercises 23

tree on the left defines plots, graphs, data sets, and annotations that will be generated by
the step. The properties on the right allow editing the selected definition.

27. Expand the p0: plot1 node in the tree.

A default graph is included in the plot: g0: graph1. Where a plot is an entire AptPlot
canvas, each graph is a specific segment of that canvas dedicated to displaying its
underlying data sets.

28. Select g0: graph1.

The properties for the graph definition are shown to the right.

Note: Almost all properties for the graph are optional properties: the property editor
displays a check-box to the left used to activate the property. Unless activated, definition
properties do not change the plot formatting. This is provided so that AptPlot steps have
the flexibility to employ parameter files for general formatting, while step definitions
override specific properties as needed. Alternatively, the entire plot can be defined in the
AptPlot step without the use of a parameter file.

29. Set the following properties in g0: graph1:

Title: Sample Plot
Subtitle: Created for SNAP Workshop

30. With g0: graph1 still selected, press the New Data Set button ().

A new set definition, s0, is created in graph g0 and selected. Each data set is a collection
of independent and dependent data retrieved from one of the AptPlot step's inputs.

Intermediate Exercises 24

31. Set the following properties of s0:

Input: xtv_in
Dependent Data: pn-2A01
Legend Entry: Pressure (2A01)

These settings indicate that the data set will retrieve its data from the TRACE XTV file
connected to xtv_in, the pn-2A01 time dependent data will compose the contents of the
data set, and the specified text will appear for the data set in the legend.

32. Right-click on g0 and select New Data Set from the pop-up menu.

Another set definition, s1, is created in the graph.

33. Set the following properties of s1:

Input: xtv_in
Dependent Data: pn-2A02
Legend Entry: Pressure (2A02)

34. Select p0 and press the New Graph button ().

A new graph, g1, is created in plot p0.

35. Create a new data set in g1 and set its properties as follows:

Input: xtv_in
Dependent Data: rovn-2A01
Legend Entry: Density (2A01)

36. Press the Close button in the dialog.

The remaining steps define the output files that will be generated by the step, then submits the
stream to the Local Calculation Server.

37. In the SamplePlot properties, press the E button in the Plot Outputs property editor.

38. Press the New Output button ().

A Select Plot prompt will be displayed, asking which plot in the step will be the basis of
this output. All outputs on an AptPlot step are specific to a single plot. For images, such
as the output that will be created by this exercise, this indicates which plot will be
displayed in the generated image.

39. Select p0: plot1 in the Select Plot prompt, then press the OK button.

The new output will be created and selected in the dialog.

40. Set the properties of the new output as follows:

Name: p0_image
Type: PNG

Notice that a new output has appeared on the AptPlot step in the view, labeled p0_image.
Each output defined in the Plot Outputs editor defines another output for the step itself.

Intermediate Exercises 25

41. Create another output with the following properties:

Name: p0_plot
Type: AptPlot File
Plot: p0: plot1

42. Press the Close button.

The plot step is now setup to generate two output files: one PNG image of plot p0, and
one APF (AptPlot's native file format) of p0.

43. Select the StandPipeRestart step and make the following changes:

1. Disable the Animation Model property.

2. Change Start Paused to “Off”.

44. Submit StandPipeStream: right click it in the Navigator and select Submit Stream to
Local from the pop-up menu.

45. Press OK to confirm the submission.

The stream will be submitted and Job Status will be displayed after a few seconds.

46. Wait for the StandPipe, StandPipeRestart, and SamplePlot tasks to complete.

47. Select SamplePlot in the table.

48. Press the View Files button () in the Job List toolbar.

A pop-up menu appears. This menu is used to open files associated with a task.

49. Select Images → p0_image_png from the pop-up menu.

An image of the plot will appear in the system's native image viewer.

50. Launch AptPlot: from the Windows Start menu, select
All Programs → Plotting Tools → AptPlot.

51. In AptPlot's main menu, select File → Open.

A file browser will appear.

52. Navigate to the directory in which the stream was submitted.

53. Open the StandPipeStream folder, then the SamplePlot folder, and finally select the
p0_plot.apf file.

54. Press the Open button.

The plot will be recreated in AptPlot.

55. Close AptPlot, Job Status, and the Model Editor.

Intermediate Exercises 26

Exercise 16. Tabular Parametric and Axial Plotting
This exercise will illustrate some of the features provided by Engineering Template models, the
Tabular Parametric stream type, and the AptPlot job step.

1. Open the Model Editor, if it is not already open.

2. Press the “Create a new model” button.

3. Select “EngTemplate model” and press OK.

A new Engineering Template model will be created and
added to the Navigator.

An Engineering Template model allows the user to
interact with multiple models and potentially multiple
analysis codes, simultaneously. This interaction can
take the form of a high-level controlled single model,
multiple models that interact with one another, or
separate cases that run independently but are
ultimately compared to one another.

4. Save the new model as “Standpipe_Template.med” in
a temporary location by using the File → Save menu
item.

5. Select the Model Options node in the Navigator.

6. Set the Title to “SP Template”.

7. Select the “Reference Models” category node in the Navigator.

8. Right-click on the “Reference Models” node and select the New option from the
right-click pop-up menu.

Note: Engineering templates reference models through Reference Model components.
These components reference models by selecting the Model Editor Document (MED)
files in which they are contained. The models selected as model references are referred to
as “underlying models”.

9. Select “TRACE model” from the list of available model types and Press OK.

A new Reference Model component with the name “Model Reference 1” will be added to
the Navigator and selected.

10. Press the E button in the Input Model property editor.

11. Open the “Underlying Standpipe” model provided with this exercise.

This file is located at: “SNAP_Exercises/Underlying_StandPipe.med”

A dialog will appear indicating that units selected for the Engineering Template model
(SI) and the underlying model (British) do not match.

Intermediate Exercises 27

12. Press Yes to switch the Engineering Template model to British units.

Note: The Engineering Template model can use either British or SI display units. This
setting does not affect the units selected by underlying models. All values displayed
and/or edited in an engineering template are automatically converted to the appropriate
units when they are passed to an underlying model.

The next set of steps creates a pair of global variables that will be used to modify the underlying
model.

13. Expand the “Global Variables → Global Reals” category node in the Navigator.

14. Create a new Global Real by right-clicking the “Global Reals” node and selecting New
from the pop-up menu.

15. Select the “No Unit (-)” unit type from the list and press OK.

This will create a new global real using the “No Unit” unit type and select it in the
Navigator.

16. Set the Name property to “inletvel”.

17. Press the E button in the Reference Variables property editor.

This will open the “Select inletvel Values” dialog to allow references to be made to
variables in the underlying model.

18. Press the New () button on the toolbar.

Intermediate Exercises 28

19. Select “m1.inletvel” from the list.

20. Press OK to select the variable.

21. Press OK to close the “Select Values” dialog.

22. Create another new Global Real by right-clicking the “Global Reals” node and selecting
New from the pop-up menu.

23. Select the “No Unit (-)” unit type from the list and press OK.

24. Set the Name property to “valvepos”.

25. Press the E button in the Reference Variables property editor.

26. Press the New button on the toolbar.

27. Select “m1.vposition” from the list.

28. Press OK to select the variable.

29. Press OK to close the “Select Values” dialog.

This set of steps will create a new tabular parametric job stream. Tabular Parametric streams use
a specialized stream type that defines parametric iterations using a table of variable values.

30. Create a new Job Stream by right-clicking the “Job Streams” node and selecting New
from the pop-up menu.

31. Select the Tabular Parametric stream type and press OK.

Intermediate Exercises 29

32. Press Finish to close the Create New Job Stream dialog.

33. Set the Name of the new job stream to “Template_Stream”.

34. Press the E button in the Parametric Properties property editor.

This will open the Select Numeric Variables dialog used to configure the tabular
parametric stream type.

Note: Independent variables are the variables that will be modified by each row of the
tabular parametric to create the resulting parametric iterations. Independent variables can
be added, removed, and re-ordered, in the Table Variables tab using the tool-bar provided
on the left side of the dialog.

Intermediate Exercises 30

Dependent variables are additional variables that will be included in the parametric
keywords but will not be modified directly. These variables can be added, removed, and
re-ordered, using the tool-bar provided on the right side of the dialog.

35. Press the Independent Variables New button (on the left) to add a new independent
variable.

Notice that there are two variables with the name “inletvel” included in the list. The first
is a global variable in the engineering template (StandPipe_Template.med). The second
is an underlying variable (Underlying_Standpipe.med). The Source Model column is
included in the list for each variable to ensure that the correct variable can be identified
and selected.

36. Select the global variable “inletvel” from the list of variables.

37. Press OK to select the variable.

This will add the global real variable “inletvel” to the list of independent variables.

38. Press the New button again to add a second independent variable.

39. Select “m1.heatflux” from the list of variables.

40. Press OK to select the variable.

Notice that the selected variable is displayed in the list of independent variables as
“m1.heatflux”. The “m1” indicates that the variable is a variable in the first underlying
model.

41. Press the Dependent Variables New button to add a dependent variable.

Intermediate Exercises 31

42. Select “valvepos” from the list of variables.

43. Press OK to select the variable.

44. Select the Tabular Values tab.

Note: The table data that makes up the tabular parametric is located in the Tabular Values
tab. The table contains a column for task index and a column for each of the independent
variables selected in the Table variables table. The tool-bar at the top of the tab includes
buttons for creating new rows, removing rows, and reordering rows.

45. Press the New button six times to add six new rows to the table.

Intermediate Exercises 32

46. Enter the following inletvel and m1.heatflux values.

Task Index inletvel (-) m1.heatflux (-)

1 1.0 -1.0E4

2 5.0 -1.0E4

3 1.0 -5.0E4

4 5.0 -5.0E4

5 1.0 -2.0E5

6 5.0 -2.0E5

47. Press OK to complete the tabular parametric properties.

48. Expand the “Job Streams → Template_Stream → Model Nodes” node in the
Navigator.

49. Select the “TRACE model 1” node in the Navigator.

50. Set the Parametric property to “True”.

51. Drag the “TRACE model 1” node from the Navigator directly into the “Default View”.

This will create a representation of the model node in the view that can be connected to
other job stream elements.

52. Create a new job step by right-clicking the “Stream Steps” node and selecting New from
the pop-up menu.

53. Select TRACE from the list of applications and press the OK button.

This will create a new TRACE job step and select it in the Navigator.

54. Set the Name property to “StandPipe”.

55. Set the Interactive property to “On”.

56. Drag the “StandPipe” job step node from the Navigator into the “Default View”.

57. In the “Default View”, use the Connect Tool to connect the “input” connection point of
the TRACE model node to the “tracin” connection point of the “StandPipe” step.

The next set of steps will describe how to use the AptPlot step to create an axial plot of the void
in the standpipe for each of the six TRACE executions in the job stream.

58. Create a new job step by right-clicking the “Stream Steps” node and selecting New from
the pop-up menu.

Intermediate Exercises 33

59. Select AptPlot from the list of applications and press the OK button.

Note: The AptPlot step is a specialized job step included with the Model Editor that can
specify any number of plots, all of which are generated each time its parent stream is run.

60. Set the Name property to “Void_Profile”.

61. Press the E button in the Plot Inputs property editor.

This will open the plot inputs dialog shown below.

62. Press the New button to create a new plot file input.

63. Set the Name of the new input to “xtv_in”.

64. Set the Type to “TRACE”.

65. Set the File Set property to “True”.

66. Press the Close button to close the dialog.

67. Drag the “Void_Profile” job step node from the Navigator into the “Default View”.

68. In the “Default View”, use the Connect Tool to connect the “trcxtv” connection point of
the “StandPipe” step to the “xtv_in” connection point of the “Void_Profile” step.

69. Select the “Void_Profile” step in the Navigator or the view.

70. Press the E button in the Plot Outputs property editor.

Intermediate Exercises 34

71. Press the New button to create a new plot output.

72. Select the “p0: plot1” plot definition and press OK.

73. Set the output Name to “void_profile”.

74. Set the output Type to “PDF”.

75. Press Close to close the plot outputs window.

76. Press the E button in the Plots property editor.

This will open the Plot Properties dialog. This editing dialog is the heart of the AptPlot
step. Within it, the plots, graphs, data sets, and annotations created by the step are
added, edited, and removed. Note that this dialog is non-modal; other dialogs and Model
Editor functions can be used while this dialog is open. Changes made in this dialog can
be undone and redone with the standard undo/redo buttons and menu items.

The tool-bar over the tree structure can be used to add or remove plots, graphs, data sets,
and annotations. Graphs can only be added when the parent plot is selected; data sets
and annotations can only be added when the parent graph is selected. Additionally, cut,
copy, and paste actions are available on the right side of the tool-bar. All of these actions
are also available from the right-click pop-up menu of the various entries in the tree.

Intermediate Exercises 35

77. Select the “g0: graph1” graph node.

78. Set the following g0 properties:

Name: alpn
Title: Outlet Void
X Axis Label: Void
X Axis Scaling: Explicit
X Axis Bounds: [-0.1, 1.1]
Y Axis Label: Elevation (m)
Legend Coordinates: [0.65, 0.35]
Legend Text Font Size: 50

79. Press the New Set () button to create a new data set.

This will create a new set “s0” and select it, displaying its properties to the right.

Intermediate Exercises 36

80. Press the E button in the Input property editor.

This will open the Select Input dialog to allow a plot input to be selected for the data set.

81. Select “xtv_in” and press OK. Set the following sets 0-5 properties:

• Plot Type: Axial

• Dependent Data: alpn-1A%2N

• Time: 195.0 (s)

• Fine-Mesh Elevations: Automatic

• Axial Orientation: Y Axis

82. Set the Legend Entry property to the following single line:

Inlet Velocity: ${pkw_v:inletvel} Heat Flux: ${pkw_v:m1.heatflux}
Valve Position: ${pkw_v:valvepos}

This will replace the text in the legend entry representing each line on the plot. The
portions of the legend that are enclosed in dollar braces “${“ and brace “}” are called
“tokens.” These tokens will be replaced with the token value when the job stream is

Intermediate Exercises 37

submitted. Note that the heat flux variable is set to “m1.heatflux”. “m1” is the Short
Name property of the reference model that is the source of the “heatflux” variable.

This legend entry uses three “Parametric Keyword” tokens (${pkw_v: <keyword>}) to
make it clear which velocity, heat flux, and valve position values are represented by
which void profile line.

83. Expand the sets 0-5 node.

Note that the sets 0-5 node has 5 children (s0 through s5).

84. Select the first child node: s0

The first property of s0, Keywords, is the list of parametric keywords that were used to
automatically create this set as a result of the tabular parametric values. Pressing the
View () button will show the list of keywords and values in an easy to read pop-up.

85. Press the Close button to close the plot propertied dialog.

86. Select the “Template_Stream” node in the Navigator.

87. Drag the “Template_Stream” node into the Default View.

88. Press the Lock () button to lock the view.

89. Press the Template_Stream button in the Default View to submit the stream.

90. Press OK to confirm the submission.

This will submit the stream and open Job Status automatically.

91. Wait for the stream to complete.

92. Select the Void_Profile row in the table.

93. Press the View Files () button to open the files pop-up menu.

94. Select the “PDF Documents → void_profile.pdf” item in the pop-up menu.

This will open the void profile PDF file in the system's default PDF viewer. Note the
gradual void increase along the length of the pipe.

Intermediate Exercises 38

95. Close the PDF viewer.

Intermediate Exercises 39

Exercise 17. Uncertainty Quantification with TRACE and
DAKOTA
This exercise introduces the DAKOTA Uncertainty Quantification (UQ) job stream type, and
DAKOTA stream step. After this exercise is complete the analyst will be familiar with defining
the parameters of a UQ calculation in a TRACE model using sensitivity coefficients, extracting
figures of merit from resulting plot files, and the DAKOTA report generation.

This exercise will take a null-transient W4Loop model and perform an uncertainty quantification
on the fuel gap gas conductivity factor.

1. Open SNAP_Exercises/UQ_W4Loop.med, included with these exercises.

2. Open the UQ Stream view if it is not already visible.

3. Select “Job Streams → UQ_Stream” in the Navigator.

This job stream is currently set to a Basic Stream. In the next steps, the stream type will
be set to DAKTOA Uncertainty and the uncertainty parameters will be initialized.

4. Open the Stream Type property editing dialog.

5. Select the DAKOTA Uncertainty stream type and press the OK button.

6. Open the Parametric Properties editing dialog.

This dialog is the primary control and configuration of an Uncertainty Quantification.
This is used to define the labels for the Figures of Merit, select the input variables, and
define the distribution used to generate the input variable values. Finally, the Report tab
allows the contents of the generated DAKTOA report to be configured.

7. Add a new Figure of Merit (FoM) by pressing the new () button next to the Figures of
Merit label.

8. Set the Name of the FoM to “FuelTemp”.

9. Check the Upper Limit check box for the “FuelTemp” FoM.

10. Select the Variables tab.

Intermediate Exercises 40

This tab contains the model input values that are modified as part of the Uncertainty
Quantification. The TRACE plug-in allows UQ stream types to modify sensitivity
coefficients, boundary component table data, and variable values. For this exercise, we
will be modifying the sensitivity coefficient that controls the gap conductance of the fuel
rods.

11. Add a new variable by pressing the new () button at the top of the dialog.

12. Ensure that the Sensitivity Coefficients entry is selected in the variable category list.

13. Select “gapCondSV” and press the Next button.

14. Select the Factor radio button and press the Finish button.

15. Select the Distributions tab.

16. Set the Name of distribution d1 to “unif”.

17. Set the Distribution type to Normal.

18. Set the μ (Mean) value to 1.0.

19. Set the σ (STDV) value to 0.1.

This defines Normal distribution about 1.0 with a standard deviation of 0.1. This will
result in values that range between 0.7 and 1.3, as shown in the Probability Distribution
graph. The distribution could be further modified with the Minimum and Maximum
fields.

Intermediate Exercises 41

20. Select the Report tab.

21. Set the File Format to “Microsoft Word Document (.docx)”.

22. Set the Title Page to “Title Page Note” by pressing the S button to the right of Title
Page.

23. Activate the Header and set the text to “Fuel Rod UQ”.

24. Activate the Footer and set the text to “TRACE Class”.

25. Add a new plot by pressing the () button below the Plotted Values label.

26. Select “FuelTemp” in the list and press the OK button.

27. Check the Use Independent check-box for the new plot.

28. Click in the Independent column in the FuelTemp row and press the S button that
appears.

29. Select the “unif” entry and press the OK button.

30. Add a second new plot and select “FuelTemp” in the list.

31. Add a third new plot and select “unif” in the list.

The report will include these three plots. The first is a plot that shows the figure of merit
value vs the sensitivity coefficient, the second shows the figure of merit value vs the
iteration index, and the third shows the sensitivity coefficient values vs the iteration
index.

Intermediate Exercises 42

The final step in setting up the initial uncertainty stream type properties is to define the
number of executions that will be performed. This can be entered manually or calculated
to ensure the desired confidence level.

32. Select the DAKOTA Properties tab.

33. Activate the Order property by checking the check box.

34. Set the value of the Order property to “2”.

35. Check the Upper Limit checkbox for the “FuelTemp” Figure of Merit.

36. Press the Calculate () button next to the Number of Samples field.

This uses the selected Sampling Method, Probability and Confidence levels to determine
the number of samples required for the targeted number of Figures of Merit. The number
of samples indicates the number of input models that will be generated.

37. Press Yes to proceed.

38. Press the OK button to close the dialog.

The Stream properties are now defined. The rest of the modifications for submitting the
UQ case are done in the job stream. The next steps will set the restart model node to
Parametric. This indicates to the job stream that the variables modified by the UQ
properties should be applied to the restart case.

39. Select the UQ Stream view.

40. Select the Null-Transient model node in the view.

Intermediate Exercises 43

41. Set the Parametric property to “True”.

Note: The model node now appears as a stack of models. This is the indication of a
parametric model node.

The next steps require creating an Extract Data step to populate the figure of merit values. The
Extract Data step uses AptPlot to parse the plot file generated by each TRACE execution. A
single value is retrieved from the plot file and stored as the figure of merit for that run.

42. Use the Insert Tool to add a new Stream Step to the right of the TRACE Restart_Job
step.

43. Set the Insert into Job Stream drop-down list to “UQ_Stream”.

44. Select Extract Data from the list of applications.

45. Press the OK button to finish adding the step.

46. Set the Name of the step to “Extract”.

47. Set the Plot File Type to “TRACE”.

The following steps will add an AptPlot script to the Extract data step that determines the figure
of merit value from the TRACE plot file. For this exercise the maximum center-line temperature
of heat structure 140 at the end of the calculation will be stored as the figure of merit
“FuelTemp”.

48. Open the AptPlot Script property editing dialog.

49. Replace the “< Enter AptPlot commands here >” line with the following text:

CALC "xval = maxXval(T0_sv1)"

CALC "<tin> = getPtsAtX(xval, 'T0_tsurfi-140A%2N')"

CALC "FuelTemp = maxYval(<tin>)"

50. Press the OK button.

51. Use the connect tool to connect the trcxtv output of the Restart_Job step to the plot
input of the Extract Data step.

52. Use the Insert Tool to add a DAKOTA job step to the right of the Extract Data step.

53. Set the step Name to “UQReport”.

Intermediate Exercises 44

54. Use the Connect Tool to connect the vars output of the Extract Data step to the vars
input of the DAKOTA job step.

The job is now ready to submit. The next steps will submit the job to the Calculation
Serve, and examine the generated report.

55. Right-click the “UQ_Stream” node in the Navigator and select the Submit Stream to
Local menu item.

56. Press OK in the confirmation dialog for executing 188 jobs and wait for the streams to
complete.

57. Once the stream is complete, expand the “UQ_Stream” node in the Job Status
Navigator.

58. Right-click the “UQReport” node and select the Open Folder menu item.

59. Open the report.docx file in the UQReport directory.

Note: This file can also be opened through the
“View Files → Documents → docx – report.docx” menu item from the completed
UQReport task in Job Status.

This completes the Uncertainty Quantification exercise.

Intermediate Exercises 45

Exercise 18. Creating a TRACE Model Notebook
The Model Editor provides a means of generating model-wide reports as a single annotated
document, called a “model notebook”. Information such as calculations, export data, model
status, attribute descriptions, etc. are included in the notebook along with “model notes.” Model
notes are HTML notes that can be associated with components and their attributes. This exercise
will briefly explore the process of creating a new model note and including it in a model
notebook.

The following steps will guide you through the exercise.

1. Open SNAP_Exercises/TraceTypPWR_Notebook.med, included with these exercises.

This model was created by converting the RELAP5 typpwr model to TRACE using the
SNAP R52TR plug-in. The original model and the conversion process were documented
with model notes.

2. Select Pipe 200 in the Navigator.

Pipe 200 is located under Hydraulic Components → Pipes.

3. Press the New Model Note button () At the top of the Property View, to the right of
the the Pipe 200 label.

The Model Notes dialog will be opened, as shown below. This dialog is used to manage
all notes in the model.

The central table lists components in the model and their attributes. By opening the
window from the context of Pipe 200, the dialog is opened to a view restricted to the
properties of that component.

Intermediate Exercises 46

4. Select the first row, which represents Pipe 200 itself.

5. Press the Link To button to create a new note or link to an existing note.

A prompt will appear asking which action to take. This can be used to add an entirely
new model note or to add a reference to an existing note.

6. Make sure “Link to a new note” is selected at the prompt, then press the OK button.

The Create Note window is displayed, as shown below. This dialog will be used over the
next several steps to define the contents of the note.

7. At the top of the dialog, set the Title of the new note to “Pipe 200 Description”.

8. Left-click in the central text area and type “Broken Loop Hot Leg”.

9. Press the OK button in the Create Note dialog.

Back in the Model Notes dialog, the Note column for Pipe 200 will indicate that the new
note has been associated with this component.

A more detailed description of the Model Notes and Create Note dialogs can be found in
the SNAP User's manual.

10. Close the Model Notes dialog.

Note: The Model Note button for the component has a different icon (). This indicates
that a note has been associated with the indicated component or attribute. Otherwise, the
button functions identically as before.

Intermediate Exercises 47

11. Right-click on the TraceTypPWR_Notebook.med model node and select Export →
Model Notebook from the pop-up menu.

The Export Model Notebook dialog will appear, as shown below. This dialog allows
exporting a full description of the model as a word-processor document containing a full
report of the model contents.

12. Set the Document Format to “Microsoft Word Document (.docx)”.

Model notebooks can be exported in either Open Document Format (.odt) or Microsoft
Word XML (.docx) format.

13. Press the Title Page Select button (S).

The Title Page field can be used to select, edit, and preview a model note used as the first
page in the report.

14. Select the “Title Page” note from the list and press OK.

Intermediate Exercises 48

15. Press the Front Matter Select button (S).

The Front Matter Organization dialog will appear, as shown above. This dialog is used
to specify the contents shown at the beginning of the generated report.

16. Press the New button ().

A Model Note selection dialog will appear.

17. Select Introduction in the dialog and press the OK button.

Introduction will appear in the list above Table of Contents. This indicates that the first
thing in the dialog (after the title page, if one was specified) will be the Introduction note,
followed by the table of contents.

18. Select Introduction in the list and press the Down button ().

The items are reordered. Now, in the generated document, the table of contents will
appear before the note.

19. Press the OK button in the Front Matter Organization dialog.

Note: The Front Matter in the Export Model Notebook dialog will change to indicate
that the front matter of the report will contain a single note.

20. Enable the Classification field and enter the text “DEMO”.

The classification label will appear on the header and footer of the document, centered,
in a large font. Typically this is used for labels such as UNCLASSIFIED, PROPRIETARY,
etc..

21. Enable the Header field and enter the text “Typical PWR Model”.

This text will appear in the header of every page.

22. Enable the Footer field and enter the text “Model Notebook Demo”.

This text will appear in the footer of every page.

23. Change Page Styles to Single Page.

This controls whether the generated document is intended to be printed in double-sided
book format or as a document with neutral positioning.

Intermediate Exercises 49

24. Make sure that each check-box in the Misc section is selected.

Note: Each of these miscellaneous settings is described in the SNAP User's manual
available by pressing the Help button.

25. Press the Export button.

The Export Model Notebook dialog will be replaced by a file browser, used to select the
location at which the notebook is created.

26. Name the report “StandPipeReport.docx” and press the Export Model Notebook
button.

A series of progress dialogs will appear while the report is generated. Once complete, the
report will be opened in the application associated with DOCX files.

27. In the word-processor, update all of the fields in the document.

For most versions of Microsoft Office, select the entire contents of the document (Ctrl-A)
then right-click and select “Update Field”.

28. Examine the document.

Note that the Introduction appears after the table of contents. Also examine how the
various components are represented throughout the report.

29. Close the word processor.

Intermediate Exercises 50

Exercise 19. Job Stream Sequences
Introduction

Job Stream Sequences were added to the Model Editor to support analyses that require looping,
convergence, or optimization. A Job Stream Sequence is a set of Job Streams that will be
executed in order. Each entry (Job Stream) in the Sequence will be executed in turn until all of
the entries have been completed. If looping behavior is required for an entry in a Sequence then
it can be executed multiple times as separate "iterations" controlled by a user-defined Python
Script. The script can be used to change variable values and determine (based on keywords)
whether the loop is finished.

The Python scripts can also be used to set the file locations in External Files and File Sets by
using Dynamic File Replacement. This allows Job Streams to be chained together using the
output files of one stream as inputs for subsequent streams. Dynamic File Replacement allows
the available files to be searched using a range of criteria including file type, keyword values,
and iteration number.

Sequence entries (i.e. Job Streams) are executed in the order in which they are defined in the
Sequence. If an entry will be executed only once (i.e. no looping) then it will be placed in the
Sequence folder directly. If an entry will be executed multiple times then the set of executions
will be placed in a sub-folder. The Python scripts for setup (Entry_setup.py), iteration
(Entry_iterate.py), and their output (Entry.py_screen) will also be placed in this sub-folder.

Intermediate Exercises 51

The purpose of this exercise is to introduce the basic functionality of Job Stream Sequences.
After completing this tutorial the user will be able to create a new Sequence, define an iteration
script, and select the output of one stream in a Sequence as input for another. For more detailed
information on the specific features covered in this tutorial, refer to the SNAP User’s Manual.

1. Open the included SNAP_Exercises/StandPipe_Sequences.med model.

2. Select the Job Streams node in the Navigator.

Selecting the Job Streams node in the Navigator will show the Sequences property editor
in the main Property View. This editor shows the number of sequences currently defined
in the model.

3. Open the Sequences dialog by pressing the Edit button on the Sequences property.

Note: The sequences dialog is the primary user interface for creating, editing and
submitting, Job Stream Sequences. This dialog has a tree of Sequences on the left with
each Sequence's Entries as child nodes. The right side of the dialog displays the
properties of the selected node (Sequence or Sequence Entry) on the left. The main
toolbar is at the top of the dialog and contains various buttons for creating and editing
Sequences.

The next step is to create a new Sequence and define its submission properties. The submission
properties will apply to all of the Job Streams in the Sequence.

4. Press the New Sequence () button.

This button adds a new Job Stream Sequence to the current model.

5. Set the Name field to "StandPipe".

6. Set the Relative Location to "DEMO/".

Notice that the initial platform is set to Local. Sequences are currently only supported on
the Local Calculation Server. In the next few steps we will add a Job Stream to the
Sequence and define the initial value for a variable.

7. Press the New Sequence Entry () button.

Note: This button adds a new Entry (Job Stream) to the currently selected Sequence. This
button will only be enabled when a Sequence is selected in the tree and the model
contains a Job Stream that is not already included in the selected sequence.

8. Select the “SteadyState” Job Stream and press the OK button.

9. Ensure that the Setup Script panel is shown.

10. Click on the Examples button and select Set A Variable Value from the menu.

11. Change the referenced variable from “V1” to "heatflux".

12. Change the initial value from 1.0 to -1.0E5.

Intermediate Exercises 52

This will set the value of the heatflux variable to -1.0E5 before the stream is executed.
Now we will add an additional Sequence Entry that will use the output generated from
the SteadyState stream as input.

13. Press the New Sequence Entry () button.

14. Select the “Transient” Job Stream and press the OK button.

Notice that the Dynamic File Replacement tab is now enabled. This means that the
selected Sequence Entry contains either an External File or File Set and that the Entry is
not the first Entry in the Sequence.

15. Select the Dynamic File Replacement tab.

16. Press the New File Replacement () button.

Intermediate Exercises 53

17. Select “External File 1 (trcrst)” in the selection dialog and press OK.

Note: The Python script appears in the right panel of the dialog. This script will be
executed after the setup python script and before executing the Job Stream. The first line
clears any previous file searches. The next line indicates that the file location for File Set
'trcrst' is being defined. The following lines define the criteria for the file search. The last
line shows that the file type for the file must be 'TRACE:TPR'. Currently, in the
SteadyState Job Stream, there is only one output file with the file type 'TRACE:TPR, so
this provides enough information to return the TPR output file from the steady state case.

18. Press the Check Sequence () button.

This will open an Error Report dialog for the currently selected Sequence. This report
contains the results of validating the Sequence as well as each of the Job Streams
referenced by Sequence Entries. In this case, there is a warning stating that the
“Transient” job stream contains an error. This is due to the fact that External File 1 does
not have a location defined. The Dynamic File Replacement added above will correct this
problem before the stream is executed.

19. Press the Close button to close the Error Report.

20. Press the Submit Sequence () button.

21. Press OK to submit the sequence without correcting the warning.

22. Wait for the submitted Sequence to complete.

Job Status will open to show the Sequence Manager’s log output while the Sequence is
running. The locations of the Python output files are listed directly in the log to make
them easier to find.

Notice that the streams are executed in the DEMO/StandPipe/ folder.

23. Close Job Status.

Next, we will modify the Sequence to iterate on the steady state case, changing the value of the
heat flux variable until the void fraction at the end of the pipe is greater than 0.5. This will be
accomplished using an Extract Data step to retrieve the value from the plot file and a post
processor Python method to write the keyword value. The first step is to add an Extract Data
step to the stream that will write the void fraction of the last hydraulic cell to a new keyword.

24. Press the Close button to close the Sequences dialog.

25. Select the “Steady State Stream” View in the view tabs.

26. Use the Insert Tool to add a new Extract Data Job Step to the right of the SS_TRACE
Step.

Intermediate Exercises 54

[<Date>] - Writing Python stderr/stdout for Transient iteration 1 to: <Location>

27. Set the new Job Step’s Stream to “SteadyState”.

28. Set the new Job Step’s Name to "extract".

29. Set the Plot File Type to “TRACE”.

30. Press the Edit button for the Input Files property.

31. Click in the table cell at row 1 (“plot”) column 4 (“source”).

32. Press the Edit button to open the Select Input Source dialog.

33. Select “TRACE 1 (SS_TRACE)” and press OK.

34. Press the OK button to close the Define Input Files for Extract Data dialog.

Now we must define the keyword that will hold the plot steering criteria. To set the value of a
keyword on a step or file the keyword must already exist. The next steps create a new keyword
for the Extract Data step that will be used to steer the iteration.

35. Press the Edit button for the Keywords property.

36. Select “Extract Data 2 (extract)“ in the list on the left hand side of the dialog.

37. Press the New Keyword () button.

38. Set the Name of the new Keyword to “alpn”.

39. Press the OK to close the Edit Keywords dialog.

Intermediate Exercises 55

Now the AptPlot script will be updated to extract the desired value to the var output file. Any
number of variables may be written to this file, each included with the “SAVEVAR” method. For
this example a single SCALAR variable is saved, which will then be read-in by a post-processor
python method.

40. Press the Edit button for the AptPlot Script property.

41. Enter the following script and press OK.

42. Press the Edit button for the Custom Processing property.

43. Select the Post-Execution Python tab at the top of the dialog.

44. Enter the following script and press OK.

The extract step now defines a keyword with the void fraction from node 20 of pipe 21.
The Sequence iteration can use this keyword value to determine the result of each
SteadyState iteration.

The next steps will add an iteration script to the SteadyState Sequence Entry. The Iteration Script
will increase the constant heat flux of the pipewall heat structure until the void fraction of the
pipe hits 0.5.

45. Select the “Job Streams” node in the Navigator.

46. Press the Edit button for the Sequences property.

47. Select the “SteadyState” Sequence Entry.

48. Select the Iterate Script tab.

49. Enter the following script into the panel.

Intermediate Exercises 56

CALC "ALPN = yAtMaxX(T0_alpn-21A20)"

SAVEVAR "ALPN"

f = open("variables.dat", 'r')

for line in f:

 if line.startswith("SCALAR"):

 values = line.split("=")

 set_keyword('alpn', values[1].strip())

The SteadyState Sequence Entry will now execute multiple times, creating a new TPR file for
each iteration. The Dynamic File Replacements in the Transient Entry will now need to be
updated to select just one of the TPR files.

50. Select the “Transient” Sequence Entry on the left side of the dialog.

51. Select the Dynamic File Replacement tab.

52. Press the New Search Criteria () button to for External File 1 (trcrst).

53. Select “Iteration” and press OK.

Note: The value of the iteration criteria is set to "last". By default, the iteration criteria is
used to select the most recent iteration. This ensures that the TPR file for the transient
case comes from the last executed steady state iteration.

Intermediate Exercises 57

print "Calculating Input For Iteration " + str(get_iteration_number())

Get the keyword set on the extract step

alpn = get_keyword("extract/alpn")

print "ALPN Keyword = " + str(alpn)

The end value is 0.5 void fraction

if alpn > 0.5:

 print "End Reached"

 set_finished()

else:

 # Keep increasing the heatflux by -1.0E5 until the desired

 # value is reached.

 heatflux = get_variable("heatflux") - 1e5

 print "Setting Heat Flux to: " + str(heatflux)

 set_variable("heatflux", heatflux)

54. Select the “StandPipe” node in the Sequence Tree on the left.

55. Press the Submit Sequence () button and wait for the sequence to complete.

56. In Job Status, close the Standpipe tab.

57. Navigate to the AptPlot step in the Transient Job stream.

Intermediate Exercises 58

58. Open the voidf.png output file.

This completes the Sequence Basics exercise.

Intermediate Exercises 59

Exercise 20. AptPlot Commands
One of AptPlot's most powerful features is its scripting language: any aspect of a plot can be
specified by a command. This exercise completely recreates the plot from the last exercise using
only commands.

Before proceeding, a note about entering commands: each command in this exercise must be
entered exactly as listed. If a command is entered incorrectly, one of two things will happen. The
most likely occurrence is AptPlot will warn the user about syntax error or incorrect argument. In
this case, close the error console and re-enter the command. The second type of error, entering a
valid but incorrect argument, will alter the plot such that it will not match the expected result.
This type of error may not be apparent until comparing the final plot to the figure. Be sure to
enter each command exactly as listed, in the indicated order.

1. Open AptPlot. If it is already open, select File → New from the main menu and select
Yes at the prompt.

AptPlot is displayed with a new and empty plot.

2. Select Window → Commands from the main menu.

This will display the Command Window, which can be used to enter, edit, save, and read
commands.

3. Enter the following commands:

TRAC XTV "<install>/SNAP_Exercises/StandPipe.xtv"
TREAD "pn-2A01"
TREAD DONE

Be sure to replace “<install>” with the complete path to the materials and resources
provided with this exercise.

This set of commands opens a TRACE plot file and reads channel data.

The TRAC command opens the file. The XTV argument specifies the file type. The
complete path of the plot file tells AptPlot where to locate the data.

Intermediate Exercises 60

The first time the TREAD command is used, it queues a channel for the next read. The
second TREAD command performs the read, plotting channel data into the current
graph.

4. Enter the following command:
VIEW XMIN 0.25

In the first AptPlot exercise, the bounds of the plot were adjusted to display the Y axis
label. This command moves the left edge of the graph to the right by increasing the
minimum X value from .15 to .25. The entered value is a viewport coordinate.

5. Press the Redraw graph button in the main toolbar.

Before the changes made by the last command are displayed, the graph must be redrawn.
Few commands automatically redraw the graph. All commands entered in subsequent
steps will share this requirement, so make sure to press the redraw button after entering
each set of commands.

6. Enter the following command:
G1 ON

The second graph is created. Note the “G1” portion of the command. Graphs can be
specified in commands by the letter G followed immediately by an index. Graph indices
start at 0, so the second graph is listed as “G1”.

7. Enter the following command:

ARRANGE(2, 1, .2, .2, .4)

AptPlot has a custom ARRANGE command that performs the same task as the Arrange
Graphs dialog seen in a previous exercise. The arguments are, in order: number of rows,
number of columns, margin around the arranged graphs, gap between columns, gap
between rows.

8. Enter the following commands
FOCUS G1
TREAD "rovn-2A01"
TREAD DONE

The FOCUS command sets the current graph selection to the second graph. The latter
two commands should be familiar from an earlier step.

9. Enter the following command:

LEGEND .85, .30
FOCUS G0
LEGEND .85, .65

At this point in the previous exercise, the legends were moved to more reasonable
locations. This command moves the legends' upper-left corners to the given coordinates.
Once again, the locations are specified in view coordinates.

10. Enter the following commands:

Intermediate Exercises 61

FOCUS G1
S0 LINE COLOR 2
S0 SYMBOL 1
G1.S0 SYMBOL SKIP 35

The last step of the original exercise set several properties of the set. These commands
recreate that edit.

Notice the “S0” for the first two commands. Set identifiers work exactly like graph
identifiers. The third command illustrates how graph and set indicators can be
compounded into a discrete entity used to target a set regardless of the graph selection.

Note that the color and symbol are specified by an index instead of a label. This is true of
all places where color, symbol, line style, font, etc. are specified in AptPlot commands. To
determine the index of a specific color, count its location from the top of its editor,
starting at 0.

Once all commands have been entered and a redraw has occurred, the final plot should
match the following image:

The next several steps will demonstrate additional capabilities of the Command Window.

11. Press the Save... button in the Command Window.

A file dialog is displayed. The Command Window allows saving a command session for
future usage.

12. Save the commands to a local file named “CommandExercise.bat”.

13. Press the Clear button in the Command Window.

The command history is cleared.

14. In the AptPlot main menu, select File → New to clear the plot. Press Yes at the prompt to
continue.

15. Back in the Command Window, press the Read... button.

Intermediate Exercises 62

A file dialog is displayed.

16. Select the CommandExercises.bat file stored earlier.

The command history from earlier has been restored.

17. Select the first command in the command list.

18. Press the Step button in the Command Window.

The TRAC command is executed and the selection in the command history moves to the
next command. The Step button is used to quickly execute a block of commands in the
Command Window.

19. Repeatedly press the Step button until all commands in the list have been executed.

20. Redraw the graph.

The plot should appear exactly as it did before selecting “File → New”.

21. Save the plot to ex16_commands.apf.

22. Using a text editor, open the ex16_commands.apf file saved in the previous step.

AptPlot Files (APF) are text files. More specifically, these files contain a list of AptPlot
commands that recreate a plot in its entirety.

In the APF, notice that most commands are prefixed by the “@” character. This prefix
distinguishes commands from data. Scrolling down to the bottom of the file, notice where
AptPlot lists the contents of each data set. The data values of a set are not prefixed by any
special character.

When entering AptPlot commands and writing batch files, any command seen in an APF
can be used by removing the “@” prefix. Once the user is familiar with AptPlot
terminology, APF files are one of the best resources for quickly finding a specific
command. Of course, an APF only uses commands that set a property to a complete
value. AptPlot provides many other commands that perform formatting and layout,
analysis and manipulation, or even store off-set data for other commands. These
commands are all detailed in AptPlot's extensive documentation, available from the Help
menu.

Intermediate Exercises 63

Exercise 21. AptPlot Scripting
Some advanced features of AptPlot batch scripting are explored in this exercise. The exercise
uses the elevations specified in one series of data channels to create an axial profile plot of void
fractions defined by another set of channels.

The following steps will guide you through the exercise.

1. Open AptPlot. If it is already open, select File → New from the main menu and select
Yes at the prompt.

AptPlot is displayed with a new and empty plot.

2. From the AptPlot main menu, select Edit → Preferences.

3. In the Preferences dialog, find the Run in safe mode option, which should appear around
the middle of the dialog.

4. Ensure that the Run in safe mode option is unchecked and press the Apply button.

5. Press the OK button to close the dialog.

6. From the AptPlot main menu, select Window → Commands.

7. If the Commands dialog has commands listed from the previous exercise, press the
Clear button.

The existing commands in the command list will be removed.

8. In the Commands dialog, press the Read button.

A file browser will appear, used to select a batch script file.

9. Navigate to and select the “SNAP_Exercises/script.b” file included with this exercise,
then press the Open button.

The command list at the top of the dialog will be populated with the contents of the file.
These commands are listed as follows, and will be referred to throughout the exercise.

TRAC XTV "<PATH>\AptPlot\Transient.xtv"
GETP "<PATH>\AptPlot\axial.par"
CALC "<elevations> = getPtsAtX(120.0, 't0_rdzNperm-31A%2N')"
CALC "<void1> = getAxial(120.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void2> = getAxial(150.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void3> = getAxial(200.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void4> = getAxial(250.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void5> = getAxial(300.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void1> = flipXY(<void1>)"
CALC "<void2> = flipXY(<void2>)"
CALC "<void3> = flipXY(<void3>)"
CALC "<void4> = flipXY(<void4>)"
CALC "<void5> = flipXY(<void5>)"
PLOTVAR "<void1>"
PLOTVAR "<void2>"
PLOTVAR "<void3>"
PLOTVAR "<void4>"
PLOTVAR "<void5>"
TITLE "Simple Standpipe Problem"

Intermediate Exercises 64

SUBTITLE "Void Fraction"
XAXIS LABEL "Void Fraction"
YAXIS LABEL "Elevation (m)"
S0 LEGEND "120.0 s"
S1 LEGEND "150.0 s"
S2 LEGEND "200.0 s"
S3 LEGEND "250.0 s"
S4 LEGEND "300.0 s"
REDRAW
HARDCOPY DEVICE "PDF"
PRINT TO "<HOME>\VoidProfile.pdf"
PRINT

10. Select the TRAC XTV line at the top of the script.

The line will appear in the Command field at the bottom the dialog. This can be used to
modify the line or execute it again.

This command is used to load the TRACE XTV file for use by AptPlot.

11. In the Command field, replace the “<PATH>” portion of the command with the full
path to the “SNAP_Exercises” folder included with this exercise.

Note: Do not press the Enter key. This would execute the command. These commands will
be executed as a complete script toward the end of the exercise.

12. Press the Replace button in the dialog.

The command in the command list will be replaced by the edited command.

13. Select the second command:

GETP "<PATH>\SNAP_Exercises\axial.par"

Similar to a previous step, the <PATH> value needs to be replaced with the path to the
AptPlot folder.

14. In the Command field, replace the “<PATH>” portion of the command with the full
path to the “AptPlot” folder included with this exercise.

15. Press the Replace button in the dialog.

The GETP command is used to retrieve an AptPlot parameter file, which contains all the
formatting needed to create an attractive plot, and applies it to the current plot. Several
commands later in the script will be used to override the formatting specified in the
parameter file, allowing it to serve as a template which individual scripts can use as a
basis.

16. Examine the third command:

CALC "<elevations> = getPtsAtX(120.0, 't0_rdzNperm-31A%2N')"

This command is used to load elevation data from the XTV file. The first argument
indicates that the values are retrieved at time 120.0 seconds. The second argument is a
pattern that indicates the data channels from which the elevation data is retrieved. The
%2N indicates that a channel index shall be substituted into that portion of the pattern,
with a minimum of two digits used to represent the index. With this particular XTV file,

Intermediate Exercises 65

channels rdzNperm-31A01 through rdzNperm-31A20 will be used to retrieve elevation
data.

The result is an Equation Interpreter vector assigned the name <elevations> that
contains channel indexes as its independent data and elevations for the dependent data.
The contents of the vector are as follows:

Independent Dependent Retrieved From
1 0.1 rdzNperm-31A01 at time 120.0
2 0.3 rdzNperm-31A02 at time 120.0
3 0.5 rdzNperm-31A03 at time 120.0
...
20 3.9 rdzNperm-31A20 at time 120.0

This will be used by the getAxial commands to create the axial plot vectors.

Note: All Equation Interpreter commands use the CALC prefix. The Equation Interpreter
was added to AptPlot to provide calculation capabilities not found in the basic command
syntax, such as the ability to use data channel names as a vector, automatic interpolation
when performing calculations on vectors of varying lengths, and convenience functions
for defining and operating on these vectors.

17. Examine the next section of commands:

CALC "<void1> = getAxial(120.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void2> = getAxial(150.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void3> = getAxial(200.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void4> = getAxial(250.0, <elevations>, 't0_alpn-21A%2N')"
CALC "<void5> = getAxial(300.0, <elevations>, 't0_alpn-21A%2N')"

These commands take the elevation data specified previously and use it to retrieve axial
plot data, once again at the times indicated by the first argument. The <elevations>
channel provided as the second argument has two purposes.

1. The independent data (which contains channel indexes) will be substituted into the
channel pattern.

2. The dependent data (channel elevations) will be used as the independent data of the
vector created by the command.

The third argument is another data channel pattern. This time, the generated vector
assigned the name <void1> will have the following values:

Independent Dependent Retrieved From
0.1 0 alpn-21A01 at time 120.0
0.3 0 alpn-21A02 at time 120.0
0.5 5.99E-003 alpn-21A03 at time 120.0
...
3.9 0.29 alpn-21A20 at time 120.0

18. Examine the next set of commands:

Intermediate Exercises 66

CALC "<void1> = flipXY(<void1>)"
CALC "<void2> = flipXY(<void2>)"
CALC "<void3> = flipXY(<void3>)"
CALC "<void4> = flipXY(<void4>)"
CALC "<void5> = flipXY(<void5>)"

This command is used to flip the independent and dependent columns of the void vectors
so that the elevations are plotted along the Y-axis and the void fraction values are plotted
along the X-axis. The command does not directly modify a vector, hence why the resulting
vectors are assigned back to the same names.

19. Examine the next set of commands:

PLOTVAR "<void1>"
PLOTVAR "<void2>"
PLOTVAR "<void3>"
PLOTVAR "<void4>"
PLOTVAR "<void5>"

This command plots the indicated vector on the current graph in the plot.

20. Examine the next set of commands:
TITLE "Simple Standpipe Problem"
SUBTITLE "Void Fraction"
XAXIS LABEL "Void Fraction"
YAXIS LABEL "Elevation (m)"

These commands are fairly self-explanatory: they define the title and subtitle of the
graph, as well as the labels displayed along the X-axis and Y-axis.

21. Examine the next set of commands:

S0 LEGEND "120.0 s"
S1 LEGEND "150.0 s"
S2 LEGEND "200.0 s"
S3 LEGEND "250.0 s"
S4 LEGEND "300.0 s"

These commands define the legend entries displayed for each data set created by the
PLOTVAR commands above. The S# label is a qualifier used to indicate which set is
being edited by the following command. For example, S0 indicates the first set of the
current graph.

22. Examine the remaining commands:
REDRAW
HARDCOPY DEVICE "PDF"
PRINT TO "<HOME>\VoidProfile.pdf"
PRINT

These commands are used to redraw the graph with all modifications made by the
previous commands, then export a PDF file depicting the graph to a location on disk.
Take note of the PRINT TO command. Once again, this command will have to be edited.

23. Select the PRINT TO command.

Intermediate Exercises 67

24. Replace the <HOME> portion of the command with the path of a convenient location to
generate the PDF.

Having adjusted the script, it can now be executed.

25. Press the Replay button in the Commands dialog.

This button executes every command in the command list. It will take a moment to
complete. Once finished, the plot should appear similar to the following:

26. In Windows Explorer, navigate to the directory specified previously for the generated
PDF file and open the “VoidProfile.pdf” file.

The generated PDF should match the graph displayed in AptPlot.

27. Close the PDF viewer and AptPlot.

Intermediate Exercises 68

	Introduction
	Exercise 12. SNAP Variables and Parametrics
	Exercise 13. Animating a Model
	Exercise 14. Interactive Controls
	Exercise 15. AptPlot in Job Streams
	Exercise 16. Tabular Parametric and Axial Plotting
	Exercise 17. Uncertainty Quantification with TRACE and DAKOTA
	Exercise 18. Creating a TRACE Model Notebook
	Exercise 19. Job Stream Sequences
	Exercise 20. AptPlot Commands
	Exercise 21. AptPlot Scripting

