
GIT Plug-in Users Manual

Symbolic Nuclear Analysis Package (SNAP)

Version 2.0.2 - August 02, 2021

Applied Programming Technology, Inc.

240 Market St., Suite 301
Bloomsburg PA 17815-1951

GIT Plug-in Users Manual
Applied Programming Technology, Inc.
by Kasey O'Connor, Bill Dunsford, and Don Ulshafer
Copyright © 2021

***** Disclaimer of Liability Notice ******

The Nuclear Regulatory Commission and Applied Programming Technology, Inc. provide no express warranties and/or guarantees and further
disclaims all other warranties of any kind whether statutory, written, oral, or implied as to the quality, character, or description of products and
services, its merchantability, or its fitness for any use or purpose. Further, no warranties are given that products and services shall be error free
or that they shall operate on specific hardware configurations. In no event shall the US Nuclear Regulatory Commission or Applied Programming
Technology, Inc. be liable, whether foreseeable or unforeseeable, for direct, incidental, indirect, special, or consequential damages, including but
not limited to loss of use, loss of profit, loss of data, data being rendered inaccurate, liabilities or penalties incurred by any party, or losses sustained
by third parties even if the Nuclear Regulatory Commission or Applied Programming Technology, Inc. have been advised of the possibilities of
such damages or losses.

iii GIT Plugin

Table of Contents
1. Introduction ... 1
2. Revision Control Toolbar ... 3

2.1. Add Button ... 3
2.2. Commit Button ... 3
2.3. Select Branch Button ... 3
2.4. Status Button .. 4

3. GIT Tools Menu .. 5
3.1. Create GIT Repository .. 5
3.2. Add Model To Repository ... 5
3.3. Commit Local Changes ... 5
3.4. Rename Model in Repository ... 5

3.4.1. Rename Dialog ... 6
3.5. Change Branch ... 6
3.6. Create New Branch ... 6
3.7. Merge Branch ... 6
3.8. Resolve Conflicts .. 6
3.9. Push Changes to Remote ... 7
3.10. Pull Changes ... 7
3.11. Compare to Base ... 8
3.12. Compare to Revision ... 8
3.13. Revert to Base .. 8
3.14. Update To Revision ... 8
3.15. Query File Status .. 8
3.16. Show Commit Log .. 9
3.17. Operation Availability ... 10

iv

1 GIT Plugin

Chapter 1. Introduction
The Symbolic Nuclear Analysis Package (SNAP) consists of a suite of integrated applications
designed to simplify the process of performing thermal-hydraulic analysis. SNAP provides a
highly flexible framework for creating and editing input for engineering analysis codes as well
as extensive functionality for submitting, monitoring and interacting with the analysis codes. A
single analysis model is stored in a platform independent binary format (MED).

Revision control systems are software packages that are used to maintain changes to documents.
These systems allow multiple users to create, and maintain documents while preserving a history
of what those changes are, and when those changes were made. The most recent version of a
document is called the "head" revision. Applying local changes to a document into a repository
is called committing. Retrieving changes made remotely to a document is called "updating" the
document. If a document has both local and remote changes, the document is said to contain
"conflicts".

This plug-in provides a user interface for interacting with the GIT revision control system.
Models may be added to a GIT repository if they have been saved to a directory that is managed by
GIT. The plug-in also provides the ability to set the saved file directory to a git managed directory.
There are two user interfaces for accessing the GIT commands: the revision control toolbar,
and the Tools menu. The toolbar contains the five most used features of revision control: add,
commit, change branch, logs and status. The Tools menu contains the full list of GIT capabilities
supported by SNAP.

2

3 GIT Plugin

Chapter 2. Revision Control Toolbar
The primary user interface for the GIT plug-in is the revision control toolbar. The buttons in this
toolbar provide quick access to revision controls for the currently selected model. Changing the
currently selected model will automaticlly update the toolbar to reflect the new model. When a
model is graphically editing a restart case the toolbar will be disabled.

Figure 2.1. Revision Control Toolbar

2.1. Add Button

This button adds the current model to the staging area in preparation for committing a file to
the repository. This button will enable whenever a change has been made to the working model
and it has not already been staged.

2.2. Commit Button

This button commits local changes to the GIT repsository. A commit message dialog, shown
in Figure 2.2, “Commit Model Dialog” will prompt the user for a log message, after which the
model will be added as the new head of the repository. This button is only enabled when the
current working model is staged by the add button.

Figure 2.2. Commit Model Dialog

2.3. Select Branch Button

 This button allows the user to select a different branch in the repository. Pressing this button
will display a list of the current branches that exist within the repository and allow the selection
of which branch to check out. The model will then reload when a branch is changed. If the model
no longer exists due to it not being present in the newly checked out branch, the model will close
and a warning will be displayed.

Status Button

GIT Plugin 4

Figure 2.3. Select Branch Dialog

Note: Changing the current working branch for one model may affect other files as the enitre
branch is checked out.

2.4. Status Button

 This button displays the current status of the file. Pressing this button will update the current
status from the server and display the status dialog. The full list of possible status icons are
displayed below.

•
 No Working Directory - The current model either does not have a local save file or the

save file is not in a directory managed by GIT.

•
 New File - The current model is saved to a GIT managed directory but has not been added

to the repository.

•
 Up To Date - The current model is a clean copy of the head of the repository. No local

or remote modifications have been made.

•
 Local Modifications - The current model has local modifications, and no remote

modifications have been made.

•
 Remote Modifications - The current model has no local modifications but newer versions

are available on the repository.

•
 Conflict (pre-merge) - The current model has local modifications and new versions are

available on the repository.

•
 Conflict (merging) - Conflict resolution between local modifications and remote

modifications has begun.

5 GIT Plugin

Chapter 3. GIT Tools Menu
The Tools menu on the main menu bar, and the Tools sub-menu on the right-click pop-up menu
both include the GIT menu. This menu contains the full list of GIT operations supported by
SNAP.

3.1. Create GIT Repository
This menu item exists on the main tools menu and allows a user create a local GIT repository. The
command requires that the model be a saved model and not be currently part of a GIT repository.
When selected, the current model's save directory will be used to initialize the git repository. The
model editor user-interface will update to provide git controls. The model will still need to be
staged and committed if that is desired.

3.2. Add Model To Repository

 This menu item adds the current model to a GIT repository when it has been saved to a
directory that is managed by GIT. When pressed, a commit message dialog, shown in Figure 2.2,
“Commit Model Dialog” will promp the user for a log message. After entering the commit log
message, the model will be added and commited to the repository. The commit operation in this
instance is performed automatically.

3.3. Commit Local Changes

 This menu item commits the current model to the head of the repository. When pressed, a
commit message dialog, shown in Figure 2.2, “Commit Model Dialog”, will prompt the user for a
log message. After entering the commit log message the model will be commited as the new head
of the repository. This button is only enabled when the current model has local modifications,
and there are no remote changes on the server.

3.4. Rename Model in Repository

 This menu item renames the current file in the repository. This deletes the current file
on the repository and adds the model under a new name. When pressed, the rename dialog
described in in Section 3.4.1, “Rename Dialog” will prompt the user for a new file name and a
commit message. The model is then renamed in the repository. This will also commit any local
modifications, and change the local save file on disk.

Rename Dialog

GIT Plugin 6

3.4.1. Rename Dialog

Figure 3.1. Rename Dialog

This dialog allows the user to select a new file name for the current model and to enter a commit
log entry for the GIT rename operation. This dialog opens when the Rename Model In Repository
menu item is selected.

3.5. Change Branch

 This menu item allows the user to select a different branch in the repository. Pressing this
button will display a list of the current branches that exist within the repository and allow the
selection of which branch to check out. The model will then reload when a branch is changed.
If the model no longer exists due to it not being present in the newly checked out branch, the
model will close and a warning will be displayed.

3.6. Create New Branch

 This menu item will create a new branch within the GIT repository. Creating a branch will
make a copy of the current working branch with the specified name. This name cannot be a
duplicate of another branch currently within the repository.

3.7. Merge Branch

 This menu item will allow the selection of another branch different from the current working
branch in the repository. The selected branch and all associated files will then be merged into
the current working branch. This may cause conflicts when merging different branches.

3.8. Resolve Conflicts

 This menu item only appears when the current local repository is in a state of conflict with
unmerged paths, usually cause by a pull command. Selecting this item will open a dialog for
resolving conflicts within the directory that contains the current model. The dialog will show a list
of all files currently in conflict in the directory. It will provide columns to decide if the remotely
pulled version of the file is desired or if the current local file is desired. After all conflicts are
marked as resolved, pressing the Ok button will bring up a commit dialog in order to commit
the merged paths. Once this process is complete it is recommended to push local changes to the
remote repository in order to maintain proper workflow.

Push Changes to Remote

7 GIT Plugin

Figure 3.2. Conflict Resolution Dialog

3.9. Push Changes to Remote

 This menu item brings up a list of potential remote hosts to push current changes to. When
using this command it is possible that it may cause conflicts and start a conflict resolution due
to not being able to perform a fast-forward merge with the specified remote hosts. In this case
the model editor will produce an error message and prompt the user to pull and start conflict
resolution.

Figure 3.3. Push Changes Dialog

3.10. Pull Changes

 This menu item pulls remote changes from a specified remote host's repository. When using
this command it is possible that it may cause conflicts and start a conflict resolution due to not
being able to perform a fast-forward merge with the specified remote hosts.

Figure 3.4. Pull From Remote Dialog

Compare to Base

GIT Plugin 8

3.11. Compare to Base

 This menu item is enabled only when the model supports graphical value comparison and the
model is not new, in a directory not managed by GIT, or un-changed from the base. When pressed
the multi-component comparison dialog opens showing the changes that have been made locally
from the repository. Updates may only be merged from the repository head to the local version.

3.12. Compare to Revision

 This menu item is enabled only when the model supports graphical value comparison and
the model is not new or in a directory not managed by GIT. When pressed the Revision History
dialog is shown. Once a specific revision has been selected the multi-component comparison
dialog opens showing the changes between the local model and repository head. Updates may
only be merged from the repository head to the local version.

3.13. Revert to Base

 This menu item replaces the current file with the version checked out from the repository.
Any local modifications will be lost.

3.14. Update To Revision

 This menu item retreives the commit log for the current file on the server and displays it
in a dialog. The local file will be replaced with the selected version. This operation supports
navigating through renamed files, and will update both the current file and the selected file to the
desired version. This operation will result in a new model being opened in a detatched head state.
This operation will not discard local changes as they will still exist in the most recent current
working branch.

3.15. Query File Status

 This menu item updates the current file status. The icon of this menu item displays the current
file status as described in Section 2.4, “Status Button”. When the operation is complete, the File
Status Dialog will be displayed, which provides the details on the current file.

Show Commit Log

9 GIT Plugin

Figure 3.5. File Status Dialog

3.16. Show Commit Log

 This menu item retrieves the full commit log for the current file in the current working
directory. This log will include file renames. An example of the Log History Dialog is shown
below in Figure 3.6, “Log History Dialog”.

Figure 3.6. Log History Dialog

The Compare and Compare to Local buttons only appear if the working model supports graphical
value based comparison. The Compare button allows comparing two revisions against one
another or comparing a selected revision against the base revision. In either case the remote
revisions will be downloaded and opened in the model editor background. The Multi-Component
Comparison dialog will be opened to show the differences between the revisions. Differences
will be flagged but values cannot be merged into either model. The Compare to Local button
compares the local model (with modifications) to the selected revision.

Operation Availability

GIT Plugin 10

3.17. Operation Availability

 Description

Add
Model

Add
current
model
to the

staging
area.

Rename
Model

Rename
the current

model
in the

repository.

Commit
Changes

Commit
the staged
changes to
the local

repository.

Table 3.1. GIT Operation Availability

 Description

Switch
Branch

Changes
the current
working
branch

and
reloads

the model.

Create
Branch

Creates
a new
branch

within the
repository
that is a
copy of

the current
branch.

Merge
Branch

Merges
a branch
into the
current

working
branch.

Table 3.2. GIT Operation Availability (continued)

Operation Availability

11 GIT Plugin

 Description

Resolve
Conflicts

Opens the
conflict

resolution
dialog.

Push
Changes

to Remote

Pushes
local

repository
changes to
a remote

repository.

Pull
Changes

from
Remote

Pulls
changes
from a
remote

repository
into the

local
repository.

Table 3.3. GIT Operation Availability (continued)

 Description

Compare
to Base

Compare
local

model
to base.

Compare
to

Revision

Compare
local

model to
a specific
revision.

Table 3.4. GIT Operation Availability (continued)

Operation Availability

GIT Plugin 12

 Description

Revert
to Base

Revert
local

model
to base
(discard

any
changes).

Update to
Revision

Update
local

model to
specific
revision
(discard

any
changes).

Table 3.5. GIT Operation Availability (continued)

 Description

Query
Model
Status

Query and
update the

current
model's
status.

Show
Commit

Log

Show
commit

log

Table 3.6. GIT Operation Availability (continued)

	GIT Plug-in Users Manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Revision Control Toolbar
	2.1. Add Button
	2.2. Commit Button
	2.3. Select Branch Button
	2.4. Status Button

	Chapter 3. GIT Tools Menu
	3.1. Create GIT Repository
	3.2. Add Model To Repository
	3.3. Commit Local Changes
	3.4. Rename Model in Repository
	3.4.1. Rename Dialog

	3.5. Change Branch
	3.6. Create New Branch
	3.7. Merge Branch
	3.8. Resolve Conflicts
	3.9. Push Changes to Remote
	3.10. Pull Changes
	3.11. Compare to Base
	3.12. Compare to Revision
	3.13. Revert to Base
	3.14. Update To Revision
	3.15. Query File Status
	3.16. Show Commit Log
	3.17. Operation Availability

